-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.R
36 lines (24 loc) · 1.03 KB
/
main.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
source("process/data_process.R")
source("ml_prepare.R")
# Read data and modify for later use
df = processData()
write.table(df, "data/matches.txt", col.names=T, row.names = F, sep=",")
tempDf = read.table("data/matches.txt", sep=",", header=TRUE, stringsAsFactors=FALSE)
tempDf$Winner = as.factor(tempDf$Winner)
# Create data set for classification
mlDf = prepareForClassification(tempDf)
write.table(mlDf, "data/matches.class.txt", col.names=T, row.names = F, sep=",")
#mlDf = prepareForClassification(tempDf, 1)
#mlDf = prepareForClassification(tempDf, 2)
mlDf = read.table("data/matches.class.txt", sep=",", header=TRUE, stringsAsFactors=FALSE)
mlDf$Winner = as.factor(mlDf$Winner)
summary(mlDf)
# Run classification
source("ML/classification.R")
# Create data set for regression
regDf = prepareForRegression(tempDf)
write.table(regDf, "data/matches.reg.txt", col.names=T, row.names = F, sep=",")
regDf = read.table("data/matches.reg.txt", sep=",", header=TRUE, stringsAsFactors=FALSE)
summary(regDf)
# Run regression
source("ML/regression.R")