-
Notifications
You must be signed in to change notification settings - Fork 111
/
Copy pathtrain_batch_multiRank_inductive_reddit_onelayer.py
executable file
·299 lines (228 loc) · 11.3 KB
/
train_batch_multiRank_inductive_reddit_onelayer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
from __future__ import division
from __future__ import print_function
import time
import tensorflow as tf
import scipy.sparse as sp
from utils import *
from models import GCN, MLP, GCN_APPRO_Onelayer
import json
from networkx.readwrite import json_graph
# Set random seed
seed = 123
np.random.seed(seed)
tf.set_random_seed(seed)
# Settings
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('dataset', 'pubmed', 'Dataset string.') # 'cora', 'citeseer', 'pubmed'
flags.DEFINE_string('model', 'gcn_appr', 'Model string.') # 'gcn', 'gcn_appr'
flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate.')
flags.DEFINE_integer('epochs', 300, 'Number of epochs to train.')
flags.DEFINE_integer('hidden1', 64, 'Number of units in hidden layer 1.')
flags.DEFINE_float('dropout', 0.1, 'Dropout rate (1 - keep probability).')
flags.DEFINE_float('weight_decay', 1e-4, 'Weight for L2 loss on embedding matrix.')
flags.DEFINE_integer('early_stopping', 30, 'Tolerance for early stopping (# of epochs).')
flags.DEFINE_integer('max_degree', 3, 'Maximum Chebyshev polynomial degree.')
rank1 = 300
rank0 = 300
# Load data
def iterate_minibatches_listinputs(inputs, batchsize, shuffle=False):
assert inputs is not None
numSamples = inputs[0].shape[0]
if shuffle:
indices = np.arange(numSamples)
np.random.shuffle(indices)
for start_idx in range(0, numSamples - batchsize + 1, batchsize):
if shuffle:
excerpt = indices[start_idx:start_idx + batchsize]
else:
excerpt = slice(start_idx, start_idx + batchsize)
yield [input[excerpt] for input in inputs]
def loadRedditFromG(dataset_dir, inputfile):
f= open(dataset_dir+inputfile)
objects = []
for _ in range(pkl.load(f)):
objects.append(pkl.load(f))
adj, train_labels, val_labels, test_labels, train_index, val_index, test_index = tuple(objects)
feats = np.load(dataset_dir + "/reddit-feats.npy")
return sp.csr_matrix(adj), sp.lil_matrix(feats), train_labels, val_labels, test_labels, train_index, val_index, test_index
def loadRedditFromNPZ(dataset_dir):
adj = sp.load_npz(dataset_dir+"reddit_adj.npz")
data = np.load(dataset_dir+"reddit.npz")
return adj, data['feats'], data['y_train'], data['y_val'], data['y_test'], data['train_index'], data['val_index'], data['test_index']
def transferRedditDataFormat(dataset_dir, output_file):
G = json_graph.node_link_graph(json.load(open(dataset_dir + "/reddit-G.json")))
labels = json.load(open(dataset_dir + "/reddit-class_map.json"))
train_ids = [n for n in G.nodes() if not G.node[n]['val'] and not G.node[n]['test']]
test_ids = [n for n in G.nodes() if G.node[n]['test']]
val_ids = [n for n in G.nodes() if G.node[n]['val']]
train_labels = [labels[i] for i in train_ids]
test_labels = [labels[i] for i in test_ids]
val_labels = [labels[i] for i in val_ids]
feats = np.load(dataset_dir + "/reddit-feats.npy")
## Logistic gets thrown off by big counts, so log transform num comments and score
feats[:, 0] = np.log(feats[:, 0] + 1.0)
feats[:, 1] = np.log(feats[:, 1] - min(np.min(feats[:, 1]), -1))
feat_id_map = json.load(open(dataset_dir + "reddit-id_map.json"))
feat_id_map = {id: val for id, val in feat_id_map.iteritems()}
# train_feats = feats[[feat_id_map[id] for id in train_ids]]
# test_feats = feats[[feat_id_map[id] for id in test_ids]]
# numNode = len(feat_id_map)
# adj = sp.lil_matrix(np.zeros((numNode,numNode)))
# for edge in G.edges():
# adj[feat_id_map[edge[0]], feat_id_map[edge[1]]] = 1
train_index = [feat_id_map[id] for id in train_ids]
val_index = [feat_id_map[id] for id in val_ids]
test_index = [feat_id_map[id] for id in test_ids]
np.savez(output_file, feats = feats, y_train=train_labels, y_val=val_labels, y_test = test_labels, train_index = train_index,
val_index=val_index, test_index = test_index)
def transferLabel2Onehot(labels, N):
y = np.zeros((len(labels),N))
for i in range(len(labels)):
pos = labels[i]
y[i,pos] =1
return y
def run_regression(train_embeds, train_labels, test_embeds, test_labels):
np.random.seed(1)
from sklearn.linear_model import SGDClassifier
from sklearn.dummy import DummyClassifier
from sklearn.metrics import accuracy_score
dummy = DummyClassifier()
dummy.fit(train_embeds, train_labels)
log = SGDClassifier(loss="log", n_jobs=55)
log.fit(train_embeds, train_labels)
print("Test scores")
print(accuracy_score(test_labels, log.predict(test_embeds)))
print("Train scores")
print(accuracy_score(train_labels, log.predict(train_embeds)))
print("Random baseline")
print(accuracy_score(test_labels, dummy.predict(test_embeds)))
def main(rank1):
adj, features, y_train, y_val, y_test,train_index, val_index, test_index = loadRedditFromNPZ("data/")
adj = adj+adj.T
# train_index = train_index[:10000]
# val_index = val_index[:5000]
# test_index = test_index[:10000]
# y_train = transferLabel2Onehot(y_train, 50)[:10000]
# y_val = transferLabel2Onehot(y_val, 50)[:5000]
# y_test = transferLabel2Onehot(y_test, 50)[:10000]
y_train = transferLabel2Onehot(y_train, 50)
y_val = transferLabel2Onehot(y_val, 50)
y_test = transferLabel2Onehot(y_test, 50)
# adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask = load_data(FLAGS.dataset)
features = sp.lil_matrix(features)
adj_train = adj[train_index, :][:, train_index]
adj_val = adj[val_index, :][:, val_index]
adj_test = adj[test_index, :][:, test_index]
numNode_train = adj_train.shape[0]
train_mask = np.ones((numNode_train,))
val_mask = np.ones((adj_val.shape[0],))
test_mask = np.ones((adj_test.shape[0],))
# print("numNode", numNode)
# Some preprocessing
features = nontuple_preprocess_features(features)
train_features = features[train_index]
if FLAGS.model == 'gcn_appr':
normADJ_train = nontuple_preprocess_adj(adj_train)
normADJ = nontuple_preprocess_adj(adj)
# normADJ_val = nontuple_preprocess_adj(adj_val)
# normADJ_test = nontuple_preprocess_adj(adj_test)
num_supports = 2
model_func = GCN_APPRO_Onelayer
else:
raise ValueError('Invalid argument for model: ' + str(FLAGS.model))
# Define placeholders
placeholders = {
'support': [tf.sparse_placeholder(tf.float32) for _ in range(num_supports)],
'features': tf.sparse_placeholder(tf.float32),
'labels': tf.placeholder(tf.float32, shape=(None, y_train.shape[1])),
'labels_mask': tf.placeholder(tf.int32),
'dropout': tf.placeholder_with_default(0., shape=()),
'num_features_nonzero': tf.placeholder(tf.int32) # helper variable for sparse dropout
}
# Create model
model = model_func(placeholders, input_dim=features.shape[-1], logging=True)
# Initialize session
sess = tf.Session()
# Define model evaluation function
def evaluate(features, support, labels, mask, placeholders):
t_test = time.time()
feed_dict_val = construct_feed_dict(features, support, labels, mask, placeholders)
outs_val = sess.run([model.loss, model.accuracy], feed_dict=feed_dict_val)
return outs_val[0], outs_val[1], (time.time() - t_test)
# Init variables
sess.run(tf.global_variables_initializer())
cost_val = []
p0 = column_prop(normADJ_train)
# testSupport = [sparse_to_tuple(normADJ), sparse_to_tuple(normADJ)]
valSupport = [sparse_to_tuple(normADJ[val_index, :])]
testSupport = [sparse_to_tuple(normADJ[test_index, :])]
t = time.time()
# Train model
for epoch in range(FLAGS.epochs):
t1 = time.time()
n = 0
for batch in iterate_minibatches_listinputs([normADJ_train, y_train, train_mask], batchsize=5120, shuffle=True):
[normADJ_batch, y_train_batch, train_mask_batch] = batch
if sum(train_mask_batch) < 1:
continue
p1 = column_prop(normADJ_batch)
if rank1 is not None:
q1 = np.random.choice(np.arange(numNode_train), rank1, p=p1) # top layer
# q0 = np.random.choice(np.arange(numNode_train), rank0, p=p0) # bottom layer
support1 = sparse_to_tuple(normADJ_batch[:, q1].dot(sp.diags(1.0 / (p1[q1] * rank1))))
features_inputs = sparse_to_tuple(train_features[q1, :]) # selected nodes for approximation
else:
support1 = sparse_to_tuple(normADJ_batch)
features_inputs = sparse_to_tuple(train_features)
# Construct feed dictionary
feed_dict = construct_feed_dict(features_inputs, [support1], y_train_batch, train_mask_batch,
placeholders)
feed_dict.update({placeholders['dropout']: FLAGS.dropout})
# Training step
outs = sess.run([model.opt_op, model.loss, model.accuracy], feed_dict=feed_dict)
# Validation
cost, acc, duration = evaluate(sparse_to_tuple(features), valSupport, y_val, val_mask, placeholders)
cost_val.append(cost)
# Print results
print("Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(outs[1]),
"train_acc=", "{:.5f}".format(outs[2]), "val_loss=", "{:.5f}".format(cost),
"val_acc=", "{:.5f}".format(acc), "time=", "{:.5f}".format(time.time() - t1))
if epoch > FLAGS.early_stopping and cost_val[-1] > np.mean(cost_val[-(FLAGS.early_stopping + 1):-1]):
# print("Early stopping...")
break
train_duration = time.time() - t
# Testing
test_cost, test_acc, test_duration = evaluate(sparse_to_tuple(features), testSupport, y_test, test_mask,
placeholders)
print("rank1 = {}".format(rank1), "rank0 = {}".format(rank0), "cost=", "{:.5f}".format(test_cost),
"accuracy=", "{:.5f}".format(test_acc), "training time=", "{:.5f}".format(train_duration))
def transferG2ADJ():
G = json_graph.node_link_graph(json.load(open("reddit/reddit-G.json")))
feat_id_map = json.load(open("reddit/reddit-id_map.json"))
feat_id_map = {id: val for id, val in feat_id_map.iteritems()}
numNode = len(feat_id_map)
adj = np.zeros((numNode, numNode))
newEdges0 = [feat_id_map[edge[0]] for edge in G.edges()]
newEdges1 = [feat_id_map[edge[1]] for edge in G.edges()]
# for edge in G.edges():
# adj[feat_id_map[edge[0]], feat_id_map[edge[1]]] = 1
adj = sp.csr_matrix((np.ones((len(newEdges0),)), (newEdges0, newEdges1)), shape=(numNode, numNode))
sp.save_npz("reddit_adj.npz", adj)
def original():
adj, features, y_train, y_val, y_test, train_index, val_index, test_index = loadRedditFromNPZ("data/")
adj = adj+adj.T
normADJ = nontuple_preprocess_adj(adj)
features = adj.dot(features)
train_feats = features[train_index, :]
test_feats = features[test_index, :]
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(train_feats)
train_feats = scaler.transform(train_feats)
test_feats = scaler.transform(test_feats)
run_regression(train_feats, y_train, test_feats, y_test)
if __name__=="__main__":
# transferRedditDataFormat("reddit/","data/reddit.npz")
# original()
main(50)