-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_latlong.py
64 lines (61 loc) · 2.07 KB
/
get_latlong.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import pandas as pd
import requests
import re
from tqdm import tqdm
tqdm.pandas()
def get_latlong(address, tipo='endereco'):
if tipo == 'endereco':
if re.match(r'.*\|.*', address):
address, bairro = address.split('|')
if re.match(r'.*–.*', address):
address, _ = address.split('–')
address = address.strip()
if bairro:
bairro = bairro.split(',')[0].strip()
address = address + ',' + bairro + ', RJ'
else:
address = address + ', RJ'
else:
address = address + ',+RJ'
# print(address)
url ='https://nominatim.openstreetmap.org/search/?addressdetails=1&q='
local = url + address + '&limit=1&format=json'
r = requests.get(local).json()
try:
lat = r[0]['lat']
lon = r[0]['lon']
bairro = r[0]['address']['suburb']
city = r[0]['address']['city']
except:
lat = ''
lon = ''
bairro = ''
city = ''
return lat, lon, bairro, city
def get_normal(address):
url = 'https://nominatim.openstreetmap.org/search/?addressdetails=1&q='
local = url + address + '&limit=1&format=json'
r = requests.get(local).json()
try:
lat = r[0]['lat']
lon = r[0]['lon']
bairro = r[0]['address']['suburb']
city = r[0]['address']['city']
except:
lat = ''
lon = ''
bairro = ''
city = ''
return lat, lon, bairro, city
def get_subregiao_by_lat_long(lat, lon):
url = f'https://nominatim.openstreetmap.org/reverse?format=json&lat={lat}&lon={lon}&addressdetails=1'
r = requests.get(url).json()
try:
distrito = r['address']['city_district']
except:
distrito = ''
return distrito
df = pd.read_excel('dados_restaurantes.xlsx')
df['latitude'], df['longitude'], df['bairro'], df['cidade'] = zip(*df['endereco'].progress_apply(lambda x: get_latlong(x, tipo='endereco')))
df['regiao'] = df.progress_apply(lambda x: get_subregiao_by_lat_long(x['latitude'], x['longitude']), axis=1)
df.to_excel('dados_restaurantes.xlsx', index=False)