forked from vishal3477/Reverse_Engineering_GMs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_attribution_test.py
142 lines (103 loc) · 4.57 KB
/
image_attribution_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from torchvision import datasets, models, transforms
#from model import *
import os
import torch
from torch.autograd import Variable
from skimage import io
from scipy import fftpack
import numpy as np
from torch import nn
import datetime
from models import encoder_image_attr
from models import fen
import torch.nn.functional as F
from sklearn.metrics import accuracy_score
from sklearn import metrics
import argparse
#################################################################################################################
# HYPER PARAMETERS INITIALIZING
parser = argparse.ArgumentParser()
parser.add_argument('--lr', default=0.0001, type=float, help='learning rate')
parser.add_argument('--data_test',default='/mnt/scratch/asnanivi/GAN_data_6/set_1/test',help='root directory for testing data')
parser.add_argument('--ground_truth_dir',default='./',help='directory for ground truth')
parser.add_argument('--seed', default=1, type=int, help='manual seed')
parser.add_argument('--batch_size', default=16, type=int, help='batch size')
parser.add_argument('--savedir', default='/mnt/scratch/asnanivi/runs')
parser.add_argument('--model_dir', default='./models')
opt = parser.parse_args()
print(opt)
print("Random Seed: ", opt.seed)
device=torch.device("cuda:0")
torch.backends.deterministic = True
torch.manual_seed(opt.seed)
torch.cuda.manual_seed_all(opt.seed)
sig = str(datetime.datetime.now())
test_path=opt.data_test
save_dir=opt.savedir
os.makedirs('%s/logs/%s' % (save_dir, sig), exist_ok=True)
os.makedirs('%s/result_2/%s' % (save_dir, sig), exist_ok=True)
transform_train = transforms.Compose([
transforms.Resize((128,128)),
transforms.ToTensor(),
transforms.Normalize((0.6490, 0.6490, 0.6490), (0.1269, 0.1269, 0.1269))
])
test_set=datasets.ImageFolder(test_path, transform_train)
test_loader = torch.utils.data.DataLoader(test_set,batch_size=opt.batch_size,shuffle =True, num_workers=1)
model=fen.DnCNN().to(device)
model_params = list(model.parameters())
optimizer = torch.optim.Adam(model_params, lr=opt.lr)
l1=torch.nn.MSELoss().to(device)
l_c = torch.nn.CrossEntropyLoss().to(device)
model_2=encoder_image_attr.encoder(num_hidden=512).to(device)
optimizer_2 = torch.optim.Adam(model_2.parameters(), lr=opt.lr)
state = {
'state_dict_cnn':model.state_dict(),
'optimizer_1': optimizer.state_dict(),
'state_dict_class':model_2.state_dict(),
'optimizer_2': optimizer_2.state_dict()
}
state1 = torch.load(model_dir)
optimizer.load_state_dict(state1['optimizer_1'])
model.load_state_dict(state1['state_dict_cnn'])
optimizer_2.load_state_dict(state1['optimizer_2'])
model_2.load_state_dict(state1['state_dict_class'])
def test(batch, labels):
model.eval()
model_2.eval()
with torch.no_grad():
y,low_freq_part,max_value ,y_orig,residual, y_trans,residual_gray =model(batch.type(torch.cuda.FloatTensor))
y_2=torch.unsqueeze(y.clone(),1)
classes, features=model_2(y_2)
classes_f=torch.max(classes, dim=1)[0]
n=25
zero=torch.zeros([y.shape[0],2*n+1,2*n+1], dtype=torch.float32).to(device)
zero_1=torch.zeros(residual_gray.shape, dtype=torch.float32).to(device)
loss1=0.5*l1(low_freq_part,zero).to(device)
loss2=-0.001*max_value.to(device)
loss3 = 0.01*l1(residual_gray,zero_1).to(device)
loss_c =10*l_c(classes,labels.type(torch.cuda.LongTensor))
loss5=0.1*l1(y,y_trans).to(device)
loss=(loss1+loss2+loss3+loss_c+loss5)
return y, loss.item(), loss1.item(),loss2.item(),loss3.item(),loss_c.item(),loss5.item(),y_orig, features,residual,torch.max(classes, dim=1)[1], classes[:,1]
print(len(test_set))
print(test_set.class_to_idx)
epochs=2
for epoch in range(epochs):
all_y=[]
all_y_test=[]
flag1=0
count=0
itr=0
for batch_idx_test, (inputs_test,labels_test) in enumerate(test_loader):
out,loss,loss1,loss2,loss3,loss4,loss5, out_orig,features,residual,pred,scores=test(Variable(torch.FloatTensor(inputs_test)),Variable(torch.LongTensor(labels_test)))
if flag1==0:
all_y_test=labels_test
all_y_pred_test=pred.detach()
all_scores=scores.detach()
flag1=1
else:
all_y_pred_test=torch.cat([all_y_pred_test,pred.detach()], dim=0)
all_y_test=torch.cat([all_y_test,labels_test], dim=0)
all_scores=torch.cat([all_scores,scores], dim=0)
fpr1, tpr1, thresholds1 = metrics.roc_curve(all_y_test, np.asarray(all_scores.cpu()), pos_label=1)
print("testing accuracy is:", accuracy_score(all_y_test,np.asarray(all_y_pred_test.cpu())))