-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstreamlitapp.py
166 lines (126 loc) · 5.57 KB
/
streamlitapp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import pandas as pd
import streamlit as st
import sqlite3
from sqlite3 import Error
import plotly.express as px
import plotly.graph_objects as go
from datetime import datetime
conn = None
try:
conn = sqlite3.connect('elf.db')
except Error as e:
print(e)
st.title = ('Lumber Prices and Other Economic Metrics')
st.header('''
Lumber Prices and Other Economic Metrics
''')
def load_data():
data = pd.read_sql_query("SELECT * FROM ELF_COMBO",conn)
lowercase = lambda x: str(x).lower()
data['Date'] = pd.to_datetime(data['Date']).dt.date
return data
data = load_data()
data = data.set_index('Date')
#https://stackoverflow.com/questions/26414913/normalize-columns-of-a-dataframe
data3=(data-data.min())/(data.max()-data.min())
data3.reset_index(inplace=True)
data3 = data3.rename(columns = {'index':'Date'})
data3['Date'] = pd.to_datetime(data3['Date']).dt.date
#fig = px.line(data, x=data.index,y="Unemployment",title="US Unemployment")
#st.plotly_chart(fig, use_container_width=True)
cola, colb = st.columns(2)
with cola:
dstart = st.date_input("Enter Start Date")
with colb:
dend = st.date_input("Enter End Date")
#https://stackoverflow.com/questions/29370057/select-dataframe-rows-between-two-dates
mask = (data3["Date"] > dstart) & (data3["Date"] <=dend)
data2 = data3.loc[mask]
fig2 = go.Figure()
col1, col2, col3, col4 = st.columns(4)
with col1:
if st.checkbox('Lumber Prices', value=True):
fig2.add_trace(go.Scatter(x=data2["Date"], y=data2["Lumber_Price"],
mode='lines',
name='Lumber Prices'))
if st.checkbox('Interest Rates'):
fig2.add_trace(go.Scatter(x=data2["Date"], y=data2["Interest_Rates"],
mode='lines',
name='Interest Rates'))
if st.checkbox('Housing Price'):
fig2.add_trace(go.Scatter(x=data2["Date"], y=data2["Housing_Price"],
mode='lines',
name='Housing Price'))
if st.checkbox('Covid Cases'):
fig2.add_trace(go.Scatter(x=data2["Date"], y=data2["cases"],
mode='lines',
name='Covid Cases'))
if st.checkbox('Covid Deaths'):
fig2.add_trace(go.Scatter(x=data2["Date"], y=data2["deaths"],
mode='lines',
name='Covid Deaths'))
with col2:
if st.checkbox('CPI'):
fig2.add_trace(go.Scatter(x=data2["Date"], y=data2["Consumer_Price_Index"],
mode='lines',
name='CPI'))
if st.checkbox('PPI'):
fig2.add_trace(go.Scatter(x=data2["Date"], y=data2["Producer_Price_Index"],
mode='lines',
name='Producer Price Index'))
if st.checkbox('Sentiment Index'):
fig2.add_trace(go.Scatter(x=data2["Date"], y=data2["Sentiment_Index"],
mode='lines',
name='Sentiment Index'))
if st.checkbox('Govt Debt'):
fig2.add_trace(go.Scatter(x=data2["Date"], y=data2["Govt_Debt"],
mode='lines',
name='Govt Debt'))
if st.checkbox('Money Supply'):
fig2.add_trace(go.Scatter(x=data2["Date"], y=data2["Money_Supply"],
mode='lines',
name='Money Supply'))
with col3:
if st.checkbox('Elect Prod'):
fig2.add_trace(go.Scatter(x=data2["Date"], y=data2["Elect_Prod"],
mode='lines',
name='Electrical Production'))
if st.checkbox('Oil Prod'):
fig2.add_trace(go.Scatter(x=data2["Date"], y=data2["Oil_Prod"],
mode='lines',
name='Oil Prod'))
if st.checkbox('Ind Prod'):
fig2.add_trace(go.Scatter(x=data2["Date"], y=data2["Industrial_Production"],
mode='lines',
name='Industrial Production'))
if st.checkbox('Wages Manuf'):
fig2.add_trace(go.Scatter(x=data2["Date"], y=data2["Hourly_Wage_Manuf"],
mode='lines',
name='Hourly Wage Manuf'))
if st.checkbox('Job Vacancy Rate'):
fig2.add_trace(go.Scatter(x=data2["Date"], y=data2["Job_Vacancy_Rate"],
mode='lines',
name='Job Vacancy Rate'))
with col4:
if st.checkbox('Gas Demand'):
fig2.add_trace(go.Scatter(x=data2["Date"], y=data2["Gas_Demand"],
mode='lines',
name='Gas Demand'))
if st.checkbox('Oil Demand'):
fig2.add_trace(go.Scatter(x=data2["Date"], y=data2["Oil_Demand"],
mode='lines',
name='Oil Demand'))
if st.checkbox('Gasoline Demand'):
fig2.add_trace(go.Scatter(x=data2["Date"], y=data2["Gasoline_Demand"],
mode='lines',
name='Gasoline Demand'))
if st.checkbox('Retail Trade'):
fig2.add_trace(go.Scatter(x=data2["Date"], y=data2["Retail_Trade"],
mode='lines',
name='Retail Trade'))
if st.checkbox('Stock Exchange'):
fig2.add_trace(go.Scatter(x=data2["Date"], y=data2["Stock_Exchange"],
mode='lines',
name='Stock Exchange'))
st.plotly_chart(fig2, use_container_width=False)
st.write(data)