-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathschedlum.py
121 lines (114 loc) · 5.58 KB
/
schedlum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from bs4 import BeautifulSoup as bs
import pandas as pd
import requests
import os
from selenium import webdriver
import sqlite3
from sqlite3 import Error
conn = None
try:
conn = sqlite3.connect('elf.db')
except Error as e:
print(e)
cursor = conn.cursor()
#Consumer price index
cursor.execute("DROP TABLE Consumer_Price_Index")
df2 = pd.read_csv('https://www.econdb.com/api/series/CPIUS/?format=csv',index_col='Date', parse_dates=['Date'])
df2.to_sql(name='Consumer_Price_Index', con=conn)
#Unemployment
cursor.execute("DROP TABLE Unemployment")
df3 = pd.read_csv('https://www.econdb.com/api/series/URATEUS/?format=csv',index_col='Date', parse_dates=['Date'])
df3.to_sql(name='Unemployment', con=conn)
#Retail Trade
cursor.execute("DROP TABLE Retail_Trade")
df4 = pd.read_csv('https://www.econdb.com/api/series/RETAUS/?format=csv', index_col='Date', parse_dates=['Date'])
df4.to_sql(name='Retail_Trade', con=conn)
#Housing
cursor.execute("DROP TABLE Housing_Price")
df5 = pd.read_csv('https://www.econdb.com/api/series/HOUUS/?format=csv',index_col='Date', parse_dates=['Date'])
df5.to_sql(name='Housing_Price', con=conn)
#hourly wage manufacturing
cursor.execute("DROP TABLE Hourly_Wage_Manuf")
df6 = pd.read_csv('https://www.econdb.com/api/series/WAGEMANUS/?format=csv',index_col='Date', parse_dates=['Date'])
df6.to_sql(name='Hourly_Wage_Manuf', con=conn)
#interest rates
cursor.execute("DROP TABLE Interest_Rates")
df7 = pd.read_csv('https://www.econdb.com/api/series/POLIRUS/?format=csv',index_col='Date', parse_dates=['Date'])
df7.to_sql(name='Interest_Rates', con=conn)
#sentiment index
cursor.execute("DROP TABLE Sentiment_Index")
df8 = pd.read_csv('https://www.econdb.com/api/series/SENTUS/?format=csv',index_col='Date', parse_dates=['Date'])
df8.to_sql(name='Sentiment_Index', con=conn)
#stock exchange index
cursor.execute("DROP TABLE Stock_Exchange")
df9 = pd.read_csv('https://www.econdb.com/api/series/SEIUS/?format=csv',index_col='Date', parse_dates=['Date'])
df9.to_sql(name='Stock_Exchange', con=conn)
#change in inventories
cursor.execute("DROP TABLE Inventory_Change")
df10 = pd.read_csv('https://www.econdb.com/api/series/CIUS/?format=csv',index_col='Date', parse_dates=['Date'])
df10.to_sql(name='Inventory_Change', con=conn)
#money supply
cursor.execute("DROP TABLE Money_Supply")
df11 = pd.read_csv('https://www.econdb.com/api/series/M3US/?format=csv',index_col='Date', parse_dates=['Date'])
df11.to_sql(name='Money_Supply', con=conn)
#electricity production
cursor.execute("DROP TABLE Elect_Prod")
df12 = pd.read_csv('https://www.econdb.com/api/series/ELEUS/?format=csv',index_col='Date', parse_dates=['Date'])
df12.to_sql(name='Elect_Prod', con=conn)
#oil production
cursor.execute("DROP TABLE Oil_Prod")
df13 = pd.read_csv('https://www.econdb.com/api/series/OILPRODUS/?format=csv',index_col='Date', parse_dates=['Date'])
df13.to_sql(name='Oil_Prod', con=conn)
#industrial production
cursor.execute("DROP TABLE Industrial_Production")
df14=pd.read_csv('https://www.econdb.com/api/series/IPUS/?format=csv',index_col='Date', parse_dates=['Date'])
df14.to_sql(name='Industrial_Production', con=conn)
#real gross domestic product
cursor.execute("DROP TABLE Real_GDP")
df15=pd.read_csv('https://www.econdb.com/api/series/RGDPUS/?format=csv',index_col='Date', parse_dates=['Date'])
df15.to_sql(name='Real_GDP', con=conn)
#Producer price Index
cursor.execute("DROP TABLE Producer_Price_Index")
df16=pd.read_csv('https://www.econdb.com/api/series/PPIUS/?format=csv',index_col='Date', parse_dates=['Date'])
df16.to_sql(name='Producer_Price_Index', con=conn)
#Government Debt
cursor.execute("DROP TABLE Govt_Debt")
df17=pd.read_csv('https://www.econdb.com/api/series/GDEBTUS/?format=csv',index_col='Date', parse_dates=['Date'])
df17.to_sql(name='Govt_Debt', con=conn)
#Export Goods
cursor.execute("DROP TABLE Export_Goods_Services")
df18=pd.read_csv('https://www.econdb.com/api/series/EXPUS/?format=csv',index_col='Date', parse_dates=['Date'])
df18.to_sql(name='Export_Goods_Services', con=conn)
#Import Goods
cursor.execute("DROP TABLE Import_Goods_Services")
df19=pd.read_csv('https://www.econdb.com/api/series/IMPUS/?format=csv',index_col='Date', parse_dates=['Date'])
df19.to_sql(name='Import_Goods_Services', con=conn)
#Job Vacancy Rate
cursor.execute("DROP TABLE Job_Vacancy_Rate")
df20=pd.read_csv('https://www.econdb.com/api/series/JVRUS/?format=csv',index_col='Date', parse_dates=['Date'])
df20.to_sql(name='Job_Vacancy_Rate', con=conn)
#General Govt Total Expenditure
cursor.execute("DROP TABLE Gen_Govt_Tot_Expenditure")
df21=pd.read_csv('https://www.econdb.com/api/series/GSPEUS/?format=csv',index_col='Date', parse_dates=['Date'])
df21.to_sql(name='Gen_Govt_Tot_Expenditure', con=conn)
#Gasoline Demand
cursor.execute("DROP TABLE Gasoline_Demand")
df23=pd.read_csv('https://www.econdb.com/api/series/GASODEMUS/?format=csv',index_col='Date', parse_dates=['Date'])
df23.to_sql(name='Gasoline_Demand', con=conn)
#Oil Demand
cursor.execute("DROP TABLE Oil_Demand")
df24=pd.read_csv('https://www.econdb.com/api/series/OILDEMUS/?format=csv',index_col='Date', parse_dates=['Date'])
df24.to_sql(name='Oil_Demand', con=conn)
#Gas Demand
cursor.execute("DROP TABLE Gas_Demand")
df25=pd.read_csv('https://www.econdb.com/api/series/GASDEMUS/?format=csv',index_col='Date', parse_dates=['Date'])
df25.to_sql(name='Gas_Demand', con=conn)
#COVID
cursor.execute("DROP TABLE COVID")
df26=pd.read_csv('https://api.covidactnow.org/v2/country/US.timeseries.csv?apiKey=9ea206e96d044285aeea6455fe2144cb')
df26.to_sql(name='COVID', con=conn)
cursor.execute("INSERT INTO TIME_UPDATED SELECT datetime('now')")
#Commit your changes in the database
conn.commit()
#Closing the connection
conn.close()