-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgame.py
337 lines (276 loc) · 10.6 KB
/
game.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import pdb
import copy
import time
import random
import curses
from enum import IntEnum
from operator import itemgetter
# We encode directions canonically as their letter (w up, s down, a left, d right)
direction_to_lambda = {
'w': lambda pos: (pos[0] - 1, pos[1]),
's': lambda pos: (pos[0] + 1, pos[1]),
'a': lambda pos: (pos[0], pos[1] - 1),
'd': lambda pos: (pos[0], pos[1] + 1),
}
def opposite_direction(direction):
"""Returns the opposite direction given as a character.
Args:
direction: char, representing the input direction.
Returns:
char, representing the opposite direction.
"""
if direction == 'w':
return 's'
if direction == 's':
return 'w'
if direction == 'a':
return 'd'
if direction == 'd':
return 'a'
# Our game encodes each square as one of these characters
WALL = 'O'
EMPTY = ' '
BIG_DOT = 'o'
# Character to print to represent an object, looks like: █
BLOCK_PRINT = chr(9608)
class Colors(IntEnum):
BLACK = 0
RED = 1
YELLOW = 2
BLUE = 3
CYAN = 4
MAGENTA = 5
class Game:
"""Class representing game states.
"""
def __init__(self):
# 2D array representing the boar
self.board = []
with open('board.txt', 'r') as f:
for line in f:
self.board.append(list(line.rstrip('\n')))
self.num_rows = len(self.board)
self.num_cols = len(self.board[0])
self.n_big_dots = 0
self.fill_board_with_dots()
# map from player username to their score
self.leaderboard = {}
# map from player username to their player object
self.players = {}
# game time
self.num_ticks = 0
# actual clock time
self.timestamp = 0
def init_curses(self):
# Default pair 0: white on black
curses.init_pair(1, curses.COLOR_RED, curses.COLOR_BLACK)
curses.init_pair(2, curses.COLOR_YELLOW, curses.COLOR_BLACK)
curses.init_pair(3, curses.COLOR_BLUE, curses.COLOR_BLACK)
curses.init_pair(4, curses.COLOR_CYAN, curses.COLOR_BLACK)
curses.init_pair(5, curses.COLOR_MAGENTA, curses.COLOR_BLACK)
def fill_board_with_dots(self):
"""Randomly fills some elements of the game board with big dots.
Side effect: modifices self.board
"""
for r in range(self.num_rows):
for c in range(self.num_cols):
if self.board[r][c] == EMPTY:
if random.randint(1, 100) <= 3:
self.board[r][c] = BIG_DOT
self.n_big_dots += 1
def draw_leaderboard(self, scr):
"""Draws the leaderboard at the bottom of the screen.
"""
for i, (username, points) in enumerate(self.leaderboard.items()):
display_string = '{} : {} points'.format(username, points)
scr.addstr(2 * self.num_rows + i, 0, display_string)
# Print stretching out column-wise by factor of 2, length-wise by factor of 3
def draw_board(self, scr, curr_username):
"""
Draws board using curses.
Args:
scr: screen to draw it on
curr_username: Username of current player.
"""
for r in range(self.num_rows):
for c in range(self.num_cols):
char_print = str(self.board[r][c])
color = Colors.BLACK
square = self.board[r][c]
if square == WALL:
char_print = BLOCK_PRINT
elif square == BIG_DOT:
char_print = BLOCK_PRINT
color = Colors.CYAN
elif isinstance(square, Player):
char_print = BLOCK_PRINT
if square.username == curr_username:
if square.superspeed_ticks:
color = Colors.BLUE
else:
color = Colors.YELLOW
else:
if square.superspeed_ticks:
color = Colors.RED
else:
color = Colors.MAGENTA
for i in range(2):
for j in range(3):
scr.addstr(r * 2 + i, c * 3 + j, char_print,
curses.color_pair(int(color)) | curses.A_BLINK)
def draw_screen(self, scr, curr_username):
"""Draws both the screen and leaderboard.
Args:
scr: screen to draw it on
curr_username: Username of current player.
"""
self.draw_board(scr, curr_username)
self.draw_leaderboard(scr)
def random_empty_location(self):
"""Selects a random empty location from the board."""
while True:
r = random.randint(0, self.num_rows - 1)
c = random.randint(0, self.num_cols - 1)
if self.board[r][c] == EMPTY:
return (r, c)
def wrap_pos(self, pos):
"""Wraps position if the Pacman goes off the edge of the screen.
Args:
pos: tuple
Returns:
tuple, position wrapped around if it went off screen.
"""
row, col = pos
return (row % self.num_rows, col % self.num_cols)
def position_is_valid(self, pos):
"""Check if position is in bounds or collision.
Args:
pos: tuple
Returns:
bool, whether or not the position is valid.
"""
row, col = pos
# Check if out of bounds, or collision
if (col >= self.num_cols or col < 0 or row >= self.num_rows or row < 0):
return False
return True
def position_can_move_to(self, player, pos):
"""Retuns whether or not player can move to pos and any gains in score.
Args:
player: player to move
pos: new position to move player to
Returns:
tuple: first element is bool (whether or not it's possible to move
to pos), second element is number of points gained or None if it's
not possible to move there.
"""
if not self.position_is_valid(pos):
return False, None
row, col = pos
square = self.board[row][col]
if square == EMPTY:
return True, 0
elif square == BIG_DOT:
return True, 10
elif isinstance(square, Player):
# Can't kill each other if both superspeed
if player.superspeed_ticks > 0 and square.superspeed_ticks == 0:
square.alive = False
return True, 100
return False, None
def process_squares(self, old, new, player):
"""Updates player based on old and new squares.
Args:
old: element of the old game square occupied
new: element of new game square to occupy
player: player moving from old to new
"""
if new == BIG_DOT:
player.superspeed_ticks = 50
def spawn_player(self, username):
"""Creates a new player at random location.
Args:
username: Username of new player to create.
"""
r, c = self.random_empty_location()
new_player = Player(self, username, (r,c))
self.leaderboard[username] = 0
self.players[username] = new_player
self.board[r][c] = new_player
return new_player
def change_player_direction(self, username, next_direction):
"""Changes player direction."""
self.players[username].change_direction(next_direction)
def restart_player(self, player):
"""Restarts player at a new random position."""
old_r, old_c = player.position
self.board[old_r][old_c] = EMPTY
new_r, new_c = self.random_empty_location()
self.board[new_r][new_c] = player
player.position = new_r, new_c
# Reset to zero
self.leaderboard[player.username] = 0
player.alive = True
def move_player(self, player):
"""Moves player.
Based on player.direction, updates player location. Updates game board
accordingly.
When there are changes in direction requested, only changes the player
direction if it's not the opposite direction as the current direction
(as standard for Pacman).
Updates leaderboard accordingly.
"""
if player.superspeed_ticks == 0 and self.num_ticks % 2 == 1:
return
row, col = player.position
# If player can go in next_direction, take that direction. Otherwise, use old direction
new_pos = direction_to_lambda[player.next_direction]((row, col))
new_pos = self.wrap_pos(new_pos)
movable, score = self.position_can_move_to(player, new_pos)
if movable and player.direction != opposite_direction(player.next_direction):
player.direction = player.next_direction
else:
new_pos = direction_to_lambda[player.direction]((row, col))
new_pos = self.wrap_pos(new_pos)
movable, score = self.position_can_move_to(player, new_pos)
if movable:
player.position = new_pos
new_row, new_col = new_pos
self.process_squares(self.board[row][col], self.board[new_row][new_col], player)
self.board[row][col] = EMPTY
self.board[new_row][new_col] = player
self.leaderboard[player.username] += score
if player.superspeed_ticks > 0:
player.superspeed_ticks -= 1
def remove_player(self, player):
"""Removes player from the game once they disconnect.
Args:
player: Username of new player to delete.
"""
row, col = player.position
self.board[row][col] = EMPTY
del self.leaderboard[player.username]
del self.players[player.username]
def tick(self):
"""Advances game forward by one step."""
for _, player in self.players.items():
if player.alive:
self.move_player(player)
self.num_ticks += 1
self.timestamp = time.time()
class Player:
def __init__(self, game, username, pos):
self.game = game
self.username = username
self.position = pos
self.direction = 'd'
self.next_direction = 'd'
self.superspeed_ticks = 0
self.alive = True
def change_direction(self, next_direction):
assert next_direction in direction_to_lambda, 'Invalid direction'
self.next_direction = next_direction
def __str__(self):
return self.username[0]
def __repr__(self):
return self.username