-
Notifications
You must be signed in to change notification settings - Fork 165
/
Copy pathtraining.py
126 lines (102 loc) · 4.35 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import datetime
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, random_split
from tqdm import tqdm
from sklearn.metrics import r2_score
from tst import Transformer
from tst.loss import OZELoss
from src.dataset import OzeDataset
from src.utils import compute_loss, fit, Logger, kfold
from src.benchmark import LSTM, BiGRU, ConvGru, FFN
from src.metrics import MSE
# Training parameters
DATASET_PATH = 'datasets/dataset_CAPT_v7.npz'
BATCH_SIZE = 8
NUM_WORKERS = 0
LR = 2e-4
EPOCHS = 30
# Model parameters
d_model = 64 # Lattent dim
q = 8 # Query size
v = 8 # Value size
h = 8 # Number of heads
N = 4 # Number of encoder and decoder to stack
attention_size = 12 # Attention window size
dropout = 0.2 # Dropout rate
pe = None # Positional encoding
chunk_mode = None
d_input = 38 # From dataset
d_output = 8 # From dataset
# Config
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device {device}")
# Load dataset
ozeDataset = OzeDataset(DATASET_PATH)
# Split between train, validation and test
dataset_train, dataset_val, dataset_test = random_split(
ozeDataset, (38000, 1000, 1000))
dataloader_train = DataLoader(dataset_train,
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=NUM_WORKERS,
pin_memory=False
)
dataloader_val = DataLoader(dataset_val,
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=NUM_WORKERS
)
dataloader_test = DataLoader(dataset_test,
batch_size=BATCH_SIZE,
shuffle=False,
num_workers=NUM_WORKERS
)
# Load transformer with Adam optimizer and MSE loss function
net = Transformer(d_input, d_model, d_output, q, v, h, N, attention_size=attention_size,
dropout=dropout, chunk_mode=chunk_mode, pe=pe).to(device)
optimizer = optim.Adam(net.parameters(), lr=LR)
loss_function = OZELoss(alpha=0.3)
metrics = {
'training_loss': lambda y_true, y_pred: OZELoss(alpha=0.3, reduction='none')(y_true, y_pred).numpy(),
'mse_tint_total': lambda y_true, y_pred: MSE(y_true, y_pred, idx_label=[-1], reduction='none'),
'mse_cold_total': lambda y_true, y_pred: MSE(y_true, y_pred, idx_label=[0, 1, 2, 3, 4, 5, 6], reduction='none'),
'mse_tint_occupation': lambda y_true, y_pred: MSE(y_true, y_pred, idx_label=[-1], reduction='none', occupation=occupation),
'mse_cold_occupation': lambda y_true, y_pred: MSE(y_true, y_pred, idx_label=[0, 1, 2, 3, 4, 5, 6], reduction='none', occupation=occupation),
'r2_tint': lambda y_true, y_pred: np.array([r2_score(y_true[:, i, -1], y_pred[:, i, -1]) for i in range(y_true.shape[1])]),
'r2_cold': lambda y_true, y_pred: np.array([r2_score(y_true[:, i, 0:-1], y_pred[:, i, 0:-1]) for i in range(y_true.shape[1])])
}
logger = Logger(f'logs/training.csv', model_name=net.name,
params=[y for key in metrics.keys() for y in (key, key+'_std')])
# Fit model
with tqdm(total=EPOCHS) as pbar:
loss = fit(net, optimizer, loss_function, dataloader_train,
dataloader_val, epochs=EPOCHS, pbar=pbar, device=device)
# Switch to evaluation
_ = net.eval()
# Select target values in test split
y_true = ozeDataset._y[dataloader_test.dataset.indices]
# Compute predictions
predictions = torch.empty(len(dataloader_test.dataset), 168, 8)
idx_prediction = 0
with torch.no_grad():
for x, y in tqdm(dataloader_test, total=len(dataloader_test)):
netout = net(x.to(device)).cpu()
predictions[idx_prediction:idx_prediction+x.shape[0]] = netout
idx_prediction += x.shape[0]
# Compute occupation times
occupation = ozeDataset._x[dataloader_test.dataset.indices,
:, ozeDataset.labels['Z'].index('occupancy')]
results_metrics = {
key: value for key, func in metrics.items() for key, value in {
key: func(y_true, predictions).mean(),
key+'_std': func(y_true, predictions).std()
}.items()
}
# Log
logger.log(**results_metrics)
# Save model
torch.save(net.state_dict(),
f'models/{net.name}_{datetime.datetime.now().strftime("%Y_%m_%d__%H%M%S")}.pth')