-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathNamedContext.agda
91 lines (73 loc) · 3.11 KB
/
NamedContext.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
module NamedContext where
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.HLevels
open import Cubical.Relation.Nullary
open import Cubical.Foundations.Prelude
open import Cubical.Functions.FunExtEquiv
open import Cubical.Functions.Embedding
open import Cubical.Data.Nat
-- open import Cubical.Data.Nat.Order
open import Cubical.Data.Sigma
open import Cubical.Data.Sum
open import Cubical.Data.Empty as ⊥
open import Cubical.Data.Unit
-- open import Cubical.Data.Fin hiding (_/_)
open import Cubical.Data.FinSet
open import Cubical.Data.FinSet.Constructors
open import Cubical.HITs.PropositionalTruncation
private
variable
ℓ ℓ' ℓ'' : Level
record Ctx (A : Type ℓ) : Type (ℓ-max ℓ (ℓ-suc ℓ-zero)) where
field
var : Type
isFinSetVar : isFinSet var
el : var → A
varFinSet : FinSet ℓ-zero
varFinSet = var , isFinSetVar
open Ctx
module _ {A : Type ℓ} where
Var : Ctx A → Type
Var Γ = Γ .var
empty-ctx : Ctx A
empty-ctx .var = ⊥
empty-ctx .isFinSetVar = isFinSetFin
empty-ctx .el = λ ()
singleton : A → Ctx A
singleton a .var = Unit
singleton a .isFinSetVar = isFinSetUnit
singleton a .el = λ _ → a
-- the-var : (a : A) → singleton a .var
-- the-var a = tt
append : Ctx A → Ctx A → Ctx A
var (append Γ₁ Γ₂) = Γ₁ .var ⊎ Γ₂ .var
isFinSetVar (append Γ₁ Γ₂) = isFinSet⊎ (varFinSet Γ₁) (varFinSet Γ₂)
el (append Γ₁ Γ₂) (inl x₁) = Γ₁ .el x₁
el (append Γ₁ Γ₂) (inr x₂) = Γ₂ .el x₂
append-i₁-el : ∀ Γ₁ Γ₂ (x₁ : Γ₁ .var) →
(append Γ₁ Γ₂) .el (inl x₁) ≡ Γ₁ .el x₁
append-i₁-el = λ Γ₁ Γ₂ x₁ → refl
module _ (B : A → Type ℓ') where
substitution : ∀ (Γ : Ctx A) → Type ℓ'
substitution Γ = ∀ (x : Γ . var) → B (Γ .el x)
append-subst : ∀ {Γ₁ Γ₂} → substitution Γ₁ →
substitution Γ₂ → substitution (append Γ₁ Γ₂)
append-subst γ₁ γ₂ (inl x) = γ₁ x
append-subst γ₁ γ₂ (inr x) = γ₂ x
append-subst-inl : {Γ₁ Γ₂ : Ctx A} → (γ₁ : substitution Γ₁) →
(γ₂ : substitution Γ₂) → (x₁ : Var Γ₁)
→ (append-subst {Γ₁ = Γ₁}{Γ₂ = Γ₂} γ₁ γ₂ (inl x₁)) ≡
(γ₁ x₁)
append-subst-inl γ₁ Γ₂ x₁ = refl
finProd : (X : FinSet ℓ-zero) → (X .fst → Ctx A) → Ctx A
finProd X Γs .var = Σ[ x ∈ X .fst ] Γs x .var
finProd X Γs .isFinSetVar = isFinSetΣ X λ x → _ , (Γs x .isFinSetVar)
finProd X Γs .el (x , y) = Γs x .el y
append-inj-el : ∀ (X : FinSet ℓ-zero)
(Γs : X .fst → Ctx A) (x : X .fst) (y : Γs x .var)
→ finProd X Γs .el (x , y) ≡ Γs x .el y
append-inj-el X Γs x y = refl
module _ (B : A → Type ℓ') (X : FinSet ℓ-zero) (Γs : X .fst → Ctx A) where
finProdSubsts : (∀ (x : X .fst) →
substitution B (Γs x)) → substitution B (finProd X Γs)
finProdSubsts γs (x , y) = γs x y