-
Notifications
You must be signed in to change notification settings - Fork 90
/
Copy pathinference_mmpose.py
105 lines (79 loc) · 3.03 KB
/
inference_mmpose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import gradio as gr
import os
import cv2
import numpy as np
from PIL import Image
from moviepy.editor import *
import sys
sys.path.append('FollowYourPose')
def get_frames(video_in):
frames = []
#resize the video
clip = VideoFileClip(video_in)
start_frame = 0 # 起始帧数
end_frame = 50 # 结束帧数
if not os.path.exists('./raw_frames'):
os.makedirs('./raw_frames')
if not os.path.exists('./mmpose_frames'):
os.makedirs('./mmpose_frames')
#check fps
if clip.fps > 30:
print("vide rate is over 30, resetting to 30")
clip_resized = clip.resize(height=512)
clip_resized = clip_resized.subclip(start_frame / clip_resized.fps, end_frame / clip_resized.fps) # subclip 2 seconds
clip_resized.write_videofile("./video_resized.mp4", fps=30)
else:
print("video rate is OK")
clip_resized = clip.resize(height=512)
clip_resized = clip_resized.subclip(start_frame / clip.fps, end_frame / clip.fps) # subclip 5 seconds
clip_resized.write_videofile("./video_resized.mp4", fps=clip.fps)
print("video resized to 512 height")
# Opens the Video file with CV2
cap= cv2.VideoCapture("./video_resized.mp4")
fps = cap.get(cv2.CAP_PROP_FPS)
print("video fps: " + str(fps))
i=0
while(cap.isOpened()):
ret, frame = cap.read()
if ret == False:
break
cv2.imwrite('./raw_frames/kang'+str(i)+'.jpg',frame)
frames.append('./raw_frames/kang'+str(i)+'.jpg')
i+=1
cap.release()
cv2.destroyAllWindows()
print("broke the video into frames")
return frames, fps
def get_mmpose_filter(mmpose, i):
#image = Image.open(i)
#image = np.array(image)
image = mmpose(i, fn_index=0)[1]
image = Image.open(image)
#image = Image.fromarray(image)
image.save("./mmpose_frames/mmpose_frame_" + str(i).split('/')[-1][:-4] + ".jpeg")
return "./mmpose_frames/mmpose_frame_" + str(i).split('/')[-1][:-4] + ".jpeg"
def create_video(frames, fps, type):
print("building video result")
clip = ImageSequenceClip(frames, fps=fps)
clip.write_videofile(type + "_result.mp4", fps=fps)
return type + "_result.mp4"
def infer_skeleton(mmpose, video_in):
# 1. break video into frames and get FPS
break_vid = get_frames(video_in)
frames_list= break_vid[0]
fps = break_vid[1]
#n_frame = int(trim_value*fps)
n_frame = len(frames_list)
if n_frame >= len(frames_list):
print("video is shorter than the cut value")
n_frame = len(frames_list)
# 2. prepare frames result arrays
result_frames = []
print("set stop frames to: " + str(n_frame))
for i in frames_list[0:int(n_frame)]:
mmpose_frame = get_mmpose_filter(mmpose, i)
result_frames.append(mmpose_frame)
print("frame " + i + "/" + str(n_frame) + ": done;")
final_vid = create_video(result_frames, fps, "mmpose")
files = [final_vid]
return final_vid, files