forked from micropython/micropython
-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathmachine_uart.c
689 lines (613 loc) · 24.7 KB
/
machine_uart.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016-2023 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// This file is never compiled standalone, it's included directly from
// extmod/machine_uart.c via MICROPY_PY_MACHINE_UART_INCLUDEFILE.
#include "driver/uart.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "esp_task.h"
#include "shared/runtime/mpirq.h"
#include "py/runtime.h"
#include "py/stream.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "uart.h"
#include "machine_timer.h"
#if SOC_UART_SUPPORT_XTAL_CLK
// Works independently of APB frequency, on ESP32C3, ESP32S3.
#define UART_SOURCE_CLK UART_SCLK_XTAL
#else
#define UART_SOURCE_CLK UART_SCLK_DEFAULT
#endif
#define UART_INV_TX UART_SIGNAL_TXD_INV
#define UART_INV_RX UART_SIGNAL_RXD_INV
#define UART_INV_RTS UART_SIGNAL_RTS_INV
#define UART_INV_CTS UART_SIGNAL_CTS_INV
#define UART_INV_MASK (UART_INV_TX | UART_INV_RX | UART_INV_RTS | UART_INV_CTS)
#define UART_IRQ_RX (1 << UART_DATA)
#define UART_IRQ_RXIDLE (0x1000)
#define UART_IRQ_BREAK (1 << UART_BREAK)
#define MP_UART_ALLOWED_FLAGS (UART_IRQ_RX | UART_IRQ_RXIDLE | UART_IRQ_BREAK)
#define RXIDLE_TIMER_MIN (5000) // 500 us
enum {
RXIDLE_INACTIVE,
RXIDLE_STANDBY,
RXIDLE_ARMED,
RXIDLE_ALERT,
};
typedef struct _machine_uart_obj_t {
mp_obj_base_t base;
uart_port_t uart_num;
uart_hw_flowcontrol_t flowcontrol;
uint8_t bits;
uint8_t parity;
uint8_t stop;
gpio_num_t tx;
gpio_num_t rx;
gpio_num_t rts;
gpio_num_t cts;
uint16_t txbuf;
uint16_t rxbuf;
uint16_t timeout; // timeout waiting for first char (in ms)
uint16_t timeout_char; // timeout waiting between chars (in ms)
uint32_t invert; // lines to invert
TaskHandle_t uart_event_task;
QueueHandle_t uart_queue;
uint16_t mp_irq_trigger; // user IRQ trigger mask
uint16_t mp_irq_flags; // user IRQ active IRQ flags
mp_irq_obj_t *mp_irq_obj; // user IRQ object
machine_timer_obj_t *rxidle_timer;
uint8_t rxidle_state;
uint16_t rxidle_period;
} machine_uart_obj_t;
static const char *_parity_name[] = {"None", "1", "0"};
/******************************************************************************/
// MicroPython bindings for UART
#define MICROPY_PY_MACHINE_UART_CLASS_CONSTANTS \
{ MP_ROM_QSTR(MP_QSTR_INV_TX), MP_ROM_INT(UART_INV_TX) }, \
{ MP_ROM_QSTR(MP_QSTR_INV_RX), MP_ROM_INT(UART_INV_RX) }, \
{ MP_ROM_QSTR(MP_QSTR_INV_RTS), MP_ROM_INT(UART_INV_RTS) }, \
{ MP_ROM_QSTR(MP_QSTR_INV_CTS), MP_ROM_INT(UART_INV_CTS) }, \
{ MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(UART_HW_FLOWCTRL_RTS) }, \
{ MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(UART_HW_FLOWCTRL_CTS) }, \
{ MP_ROM_QSTR(MP_QSTR_IRQ_RX), MP_ROM_INT(UART_IRQ_RX) }, \
{ MP_ROM_QSTR(MP_QSTR_IRQ_RXIDLE), MP_ROM_INT(UART_IRQ_RXIDLE) }, \
{ MP_ROM_QSTR(MP_QSTR_IRQ_BREAK), MP_ROM_INT(UART_IRQ_BREAK) }, \
static void uart_timer_callback(void *self_in) {
machine_timer_obj_t *self = self_in;
uint32_t intr_status = timer_ll_get_intr_status(self->hal_context.dev);
if (intr_status & TIMER_LL_EVENT_ALARM(self->index)) {
timer_ll_clear_intr_status(self->hal_context.dev, TIMER_LL_EVENT_ALARM(self->index));
if (self->repeat) {
timer_ll_enable_alarm(self->hal_context.dev, self->index, true);
}
}
// The UART object is referred here by the callback field.
machine_uart_obj_t *uart = (machine_uart_obj_t *)self->callback;
if (uart->rxidle_state == RXIDLE_ALERT) {
// At the first call, just switch the state
uart->rxidle_state = RXIDLE_ARMED;
} else if (uart->rxidle_state == RXIDLE_ARMED) {
// At the second call, run the irq callback and stop the timer
uart->rxidle_state = RXIDLE_STANDBY;
uart->mp_irq_flags = UART_IRQ_RXIDLE;
mp_irq_handler(uart->mp_irq_obj);
mp_hal_wake_main_task_from_isr();
machine_timer_disable(uart->rxidle_timer);
}
}
static void uart_event_task(void *self_in) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
uart_event_t event;
for (;;) {
// Waiting for an UART event.
if (xQueueReceive(self->uart_queue, (void *)&event, (TickType_t)portMAX_DELAY)) {
uint16_t mp_irq_flags = 0;
switch (event.type) {
// Event of UART receiving data
case UART_DATA:
if (self->mp_irq_trigger & UART_IRQ_RXIDLE) {
if (self->rxidle_state != RXIDLE_INACTIVE) {
if (self->rxidle_state == RXIDLE_STANDBY) {
self->rxidle_timer->repeat = true;
self->rxidle_timer->handle = NULL;
machine_timer_enable(self->rxidle_timer, uart_timer_callback);
}
}
self->rxidle_state = RXIDLE_ALERT;
}
mp_irq_flags |= UART_IRQ_RX;
break;
case UART_BREAK:
mp_irq_flags |= UART_IRQ_BREAK;
break;
default:
break;
}
// Check the flags to see if the user handler should be called
if (self->mp_irq_trigger & mp_irq_flags) {
self->mp_irq_flags = mp_irq_flags;
mp_irq_handler(self->mp_irq_obj);
mp_hal_wake_main_task_from_isr();
}
}
}
}
static void mp_machine_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
uint32_t baudrate;
check_esp_err(uart_get_baudrate(self->uart_num, &baudrate));
mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=%s, stop=%u, tx=%d, rx=%d, rts=%d, cts=%d, txbuf=%u, rxbuf=%u, timeout=%u, timeout_char=%u, irq=%d",
self->uart_num, baudrate, self->bits, _parity_name[self->parity],
self->stop, self->tx, self->rx, self->rts, self->cts, self->txbuf, self->rxbuf, self->timeout, self->timeout_char, self->mp_irq_trigger);
if (self->invert) {
mp_printf(print, ", invert=");
uint32_t invert_mask = self->invert;
if (invert_mask & UART_INV_TX) {
mp_printf(print, "INV_TX");
invert_mask &= ~UART_INV_TX;
if (invert_mask) {
mp_printf(print, "|");
}
}
if (invert_mask & UART_INV_RX) {
mp_printf(print, "INV_RX");
invert_mask &= ~UART_INV_RX;
if (invert_mask) {
mp_printf(print, "|");
}
}
if (invert_mask & UART_INV_RTS) {
mp_printf(print, "INV_RTS");
invert_mask &= ~UART_INV_RTS;
if (invert_mask) {
mp_printf(print, "|");
}
}
if (invert_mask & UART_INV_CTS) {
mp_printf(print, "INV_CTS");
}
}
if (self->flowcontrol) {
mp_printf(print, ", flow=");
uint32_t flow_mask = self->flowcontrol;
if (flow_mask & UART_HW_FLOWCTRL_RTS) {
mp_printf(print, "RTS");
flow_mask &= ~UART_HW_FLOWCTRL_RTS;
if (flow_mask) {
mp_printf(print, "|");
}
}
if (flow_mask & UART_HW_FLOWCTRL_CTS) {
mp_printf(print, "CTS");
}
}
mp_printf(print, ")");
}
static void mp_machine_uart_init_helper(machine_uart_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_baudrate, ARG_bits, ARG_parity, ARG_stop, ARG_tx, ARG_rx, ARG_rts, ARG_cts, ARG_txbuf, ARG_rxbuf, ARG_timeout, ARG_timeout_char, ARG_invert, ARG_flow };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_bits, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_parity, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_stop, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_tx, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_rx, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_rts, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_cts, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_txbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_rxbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_invert, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// wait for all data to be transmitted before changing settings
uart_wait_tx_done(self->uart_num, pdMS_TO_TICKS(1000));
if (args[ARG_txbuf].u_int >= 0 || args[ARG_rxbuf].u_int >= 0) {
// must reinitialise driver to change the tx/rx buffer size
#if MICROPY_HW_ENABLE_UART_REPL
if (self->uart_num == MICROPY_HW_UART_REPL) {
mp_raise_ValueError(MP_ERROR_TEXT("UART buffer size is fixed"));
}
#endif
if (args[ARG_txbuf].u_int >= 0) {
self->txbuf = args[ARG_txbuf].u_int;
}
if (args[ARG_rxbuf].u_int >= 0) {
self->rxbuf = args[ARG_rxbuf].u_int;
}
uart_config_t uartcfg = {
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
.rx_flow_ctrl_thresh = 0,
.source_clk = UART_SOURCE_CLK,
};
uint32_t baudrate;
check_esp_err(uart_get_baudrate(self->uart_num, &baudrate));
uartcfg.baud_rate = baudrate;
check_esp_err(uart_get_word_length(self->uart_num, &uartcfg.data_bits));
check_esp_err(uart_get_parity(self->uart_num, &uartcfg.parity));
check_esp_err(uart_get_stop_bits(self->uart_num, &uartcfg.stop_bits));
check_esp_err(uart_driver_delete(self->uart_num));
check_esp_err(uart_param_config(self->uart_num, &uartcfg));
check_esp_err(uart_driver_install(self->uart_num, self->rxbuf, self->txbuf, 0, NULL, 0));
}
// set baudrate
uint32_t baudrate = 115200;
if (args[ARG_baudrate].u_int > 0) {
check_esp_err(uart_set_baudrate(self->uart_num, args[ARG_baudrate].u_int));
}
check_esp_err(uart_get_baudrate(self->uart_num, &baudrate));
if (args[ARG_tx].u_obj != MP_OBJ_NULL) {
self->tx = machine_pin_get_id(args[ARG_tx].u_obj);
}
if (args[ARG_rx].u_obj != MP_OBJ_NULL) {
self->rx = machine_pin_get_id(args[ARG_rx].u_obj);
}
if (args[ARG_rts].u_obj != MP_OBJ_NULL) {
self->rts = machine_pin_get_id(args[ARG_rts].u_obj);
}
if (args[ARG_cts].u_obj != MP_OBJ_NULL) {
self->cts = machine_pin_get_id(args[ARG_cts].u_obj);
}
check_esp_err(uart_set_pin(self->uart_num, self->tx, self->rx, self->rts, self->cts));
// set data bits
switch (args[ARG_bits].u_int) {
case 0:
break;
case 5:
check_esp_err(uart_set_word_length(self->uart_num, UART_DATA_5_BITS));
self->bits = 5;
break;
case 6:
check_esp_err(uart_set_word_length(self->uart_num, UART_DATA_6_BITS));
self->bits = 6;
break;
case 7:
check_esp_err(uart_set_word_length(self->uart_num, UART_DATA_7_BITS));
self->bits = 7;
break;
case 8:
check_esp_err(uart_set_word_length(self->uart_num, UART_DATA_8_BITS));
self->bits = 8;
break;
default:
mp_raise_ValueError(MP_ERROR_TEXT("invalid data bits"));
break;
}
// set parity
if (args[ARG_parity].u_obj != MP_OBJ_NULL) {
if (args[ARG_parity].u_obj == mp_const_none) {
check_esp_err(uart_set_parity(self->uart_num, UART_PARITY_DISABLE));
self->parity = 0;
} else {
mp_int_t parity = mp_obj_get_int(args[ARG_parity].u_obj);
if (parity & 1) {
check_esp_err(uart_set_parity(self->uart_num, UART_PARITY_ODD));
self->parity = 1;
} else {
check_esp_err(uart_set_parity(self->uart_num, UART_PARITY_EVEN));
self->parity = 2;
}
}
}
// set stop bits
switch (args[ARG_stop].u_int) {
// FIXME: ESP32 also supports 1.5 stop bits
case 0:
break;
case 1:
check_esp_err(uart_set_stop_bits(self->uart_num, UART_STOP_BITS_1));
self->stop = 1;
break;
case 2:
check_esp_err(uart_set_stop_bits(self->uart_num, UART_STOP_BITS_2));
self->stop = 2;
break;
default:
mp_raise_ValueError(MP_ERROR_TEXT("invalid stop bits"));
break;
}
// set timeout
if (args[ARG_timeout].u_int != -1) {
self->timeout = args[ARG_timeout].u_int;
}
// set timeout_char
if (args[ARG_timeout_char].u_int != -1) {
self->timeout_char = args[ARG_timeout_char].u_int;
}
// make sure it is at least as long as a whole character (12 bits here)
uint32_t char_time_ms = 12000 / baudrate + 1;
uint32_t rx_timeout = self->timeout_char / char_time_ms;
if (rx_timeout < 1) {
check_esp_err(uart_set_rx_full_threshold(self->uart_num, 1));
check_esp_err(uart_set_rx_timeout(self->uart_num, 1));
} else {
check_esp_err(uart_set_rx_timeout(self->uart_num, rx_timeout));
}
// set line inversion
if (args[ARG_invert].u_int != -1) {
if (args[ARG_invert].u_int & ~UART_INV_MASK) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid inversion mask"));
}
self->invert = args[ARG_invert].u_int;
}
check_esp_err(uart_set_line_inverse(self->uart_num, self->invert));
// set hardware flow control
if (args[ARG_flow].u_int != -1) {
if (args[ARG_flow].u_int & ~UART_HW_FLOWCTRL_CTS_RTS) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid flow control mask"));
}
self->flowcontrol = args[ARG_flow].u_int;
}
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 2, 0)
uint8_t uart_fifo_len = UART_HW_FIFO_LEN(self->uart_num);
#else
uint8_t uart_fifo_len = UART_FIFO_LEN;
#endif
check_esp_err(uart_set_hw_flow_ctrl(self->uart_num, self->flowcontrol, uart_fifo_len - uart_fifo_len / 4));
}
static mp_obj_t mp_machine_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// get uart id
mp_int_t uart_num = mp_obj_get_int(args[0]);
if (uart_num < 0 || uart_num >= UART_NUM_MAX) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%d) does not exist"), uart_num);
}
// Defaults
uart_config_t uartcfg = {
.baud_rate = 115200,
.data_bits = UART_DATA_8_BITS,
.parity = UART_PARITY_DISABLE,
.stop_bits = UART_STOP_BITS_1,
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
.rx_flow_ctrl_thresh = 0,
.source_clk = UART_SOURCE_CLK,
};
// create instance
machine_uart_obj_t *self = mp_obj_malloc(machine_uart_obj_t, &machine_uart_type);
self->uart_num = uart_num;
self->bits = 8;
self->parity = 0;
self->stop = 1;
self->rts = UART_PIN_NO_CHANGE;
self->cts = UART_PIN_NO_CHANGE;
self->txbuf = 256;
self->rxbuf = 256; // IDF minimum
self->timeout = 0;
self->timeout_char = 0;
self->invert = 0;
self->flowcontrol = 0;
self->uart_event_task = 0;
self->rxidle_state = RXIDLE_INACTIVE;
switch (uart_num) {
case UART_NUM_0:
self->rx = UART_PIN_NO_CHANGE; // GPIO 3
self->tx = UART_PIN_NO_CHANGE; // GPIO 1
break;
case UART_NUM_1:
self->rx = 9;
self->tx = 10;
break;
#if SOC_UART_NUM > 2
case UART_NUM_2:
self->rx = 16;
self->tx = 17;
break;
#endif
}
#if MICROPY_HW_ENABLE_UART_REPL
// Only reset the driver if it's not the REPL UART.
if (uart_num != MICROPY_HW_UART_REPL)
#endif
{
// Remove any existing configuration
check_esp_err(uart_driver_delete(self->uart_num));
// init the peripheral
// Setup
check_esp_err(uart_param_config(self->uart_num, &uartcfg));
check_esp_err(uart_driver_install(uart_num, self->rxbuf, self->txbuf, 3, &self->uart_queue, 0));
}
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
mp_machine_uart_init_helper(self, n_args - 1, args + 1, &kw_args);
// Make sure pins are connected.
check_esp_err(uart_set_pin(self->uart_num, self->tx, self->rx, self->rts, self->cts));
return MP_OBJ_FROM_PTR(self);
}
static void mp_machine_uart_deinit(machine_uart_obj_t *self) {
check_esp_err(uart_driver_delete(self->uart_num));
}
static mp_int_t mp_machine_uart_any(machine_uart_obj_t *self) {
size_t rxbufsize;
check_esp_err(uart_get_buffered_data_len(self->uart_num, &rxbufsize));
return rxbufsize;
}
static bool mp_machine_uart_txdone(machine_uart_obj_t *self) {
return uart_wait_tx_done(self->uart_num, 0) == ESP_OK;
}
static void mp_machine_uart_sendbreak(machine_uart_obj_t *self) {
// Save settings
uint32_t baudrate;
check_esp_err(uart_get_baudrate(self->uart_num, &baudrate));
// Synthesise the break condition by reducing the baud rate,
// and cater for the worst case of 5 data bits, no parity.
check_esp_err(uart_wait_tx_done(self->uart_num, pdMS_TO_TICKS(1000)));
check_esp_err(uart_set_baudrate(self->uart_num, baudrate * 6 / 15));
char buf[1] = {0};
uart_write_bytes(self->uart_num, buf, 1);
check_esp_err(uart_wait_tx_done(self->uart_num, pdMS_TO_TICKS(1000)));
// Restore original setting
check_esp_err(uart_set_baudrate(self->uart_num, baudrate));
}
// Configure the timer used for IRQ_RXIDLE
static void uart_irq_configure_timer(machine_uart_obj_t *self, mp_uint_t trigger) {
self->rxidle_state = RXIDLE_INACTIVE;
if (trigger & UART_IRQ_RXIDLE) {
// The RXIDLE event is always a soft IRQ.
self->mp_irq_obj->ishard = false;
uint32_t baudrate;
uart_get_baudrate(self->uart_num, &baudrate);
mp_int_t period = TIMER_SCALE * 20 / baudrate + 1;
if (period < RXIDLE_TIMER_MIN) {
period = RXIDLE_TIMER_MIN;
}
self->rxidle_period = period;
self->rxidle_timer->period = period;
// The Python callback is not used. So use this
// data field to hold a reference to the UART object.
self->rxidle_timer->callback = self;
self->rxidle_timer->repeat = true;
self->rxidle_timer->handle = NULL;
self->rxidle_state = RXIDLE_STANDBY;
}
}
static mp_uint_t uart_irq_trigger(mp_obj_t self_in, mp_uint_t new_trigger) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
uart_irq_configure_timer(self, new_trigger);
self->mp_irq_trigger = new_trigger;
return 0;
}
static mp_uint_t uart_irq_info(mp_obj_t self_in, mp_uint_t info_type) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (info_type == MP_IRQ_INFO_FLAGS) {
return self->mp_irq_flags;
} else if (info_type == MP_IRQ_INFO_TRIGGERS) {
return self->mp_irq_trigger;
}
return 0;
}
static const mp_irq_methods_t uart_irq_methods = {
.trigger = uart_irq_trigger,
.info = uart_irq_info,
};
static mp_irq_obj_t *mp_machine_uart_irq(machine_uart_obj_t *self, bool any_args, mp_arg_val_t *args) {
if (self->mp_irq_obj == NULL) {
self->mp_irq_trigger = 0;
self->mp_irq_obj = mp_irq_new(&uart_irq_methods, MP_OBJ_FROM_PTR(self));
}
if (any_args) {
// Check the handler
mp_obj_t handler = args[MP_IRQ_ARG_INIT_handler].u_obj;
if (handler != mp_const_none && !mp_obj_is_callable(handler)) {
mp_raise_ValueError(MP_ERROR_TEXT("handler must be None or callable"));
}
// Check the trigger
mp_uint_t trigger = args[MP_IRQ_ARG_INIT_trigger].u_int;
mp_uint_t not_supported = trigger & ~MP_UART_ALLOWED_FLAGS;
if (trigger != 0 && not_supported) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("trigger 0x%04x unsupported"), not_supported);
}
self->mp_irq_obj->handler = handler;
if (args[MP_IRQ_ARG_INIT_hard].u_bool) {
mp_raise_ValueError(MP_ERROR_TEXT("hard IRQ is not supported"));
}
self->mp_irq_obj->ishard = false;
self->mp_irq_trigger = trigger;
self->rxidle_timer = machine_timer_create(0);
uart_irq_configure_timer(self, trigger);
// Start a task for handling events
if (handler != mp_const_none && self->uart_event_task == NULL) {
xTaskCreatePinnedToCore(uart_event_task, "uart_event_task", 2048, self,
ESP_TASKD_EVENT_PRIO, (TaskHandle_t *)&self->uart_event_task, MP_TASK_COREID);
} else if (handler == mp_const_none && self->uart_event_task != NULL) {
vTaskDelete(self->uart_event_task);
self->uart_event_task = NULL;
}
}
return self->mp_irq_obj;
}
static mp_uint_t mp_machine_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
// make sure we want at least 1 char
if (size == 0) {
return 0;
}
TickType_t time_to_wait;
if (self->timeout == 0) {
time_to_wait = 0;
} else {
time_to_wait = pdMS_TO_TICKS(self->timeout);
}
bool release_gil = time_to_wait > 0;
if (release_gil) {
MP_THREAD_GIL_EXIT();
}
int bytes_read = uart_read_bytes(self->uart_num, buf_in, size, time_to_wait);
if (release_gil) {
MP_THREAD_GIL_ENTER();
}
if (bytes_read <= 0) {
*errcode = MP_EAGAIN;
return MP_STREAM_ERROR;
}
return bytes_read;
}
static mp_uint_t mp_machine_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
int bytes_written = uart_write_bytes(self->uart_num, buf_in, size);
if (bytes_written < 0) {
*errcode = MP_EAGAIN;
return MP_STREAM_ERROR;
}
// return number of bytes written
return bytes_written;
}
static mp_uint_t mp_machine_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
machine_uart_obj_t *self = self_in;
mp_uint_t ret;
if (request == MP_STREAM_POLL) {
mp_uint_t flags = arg;
ret = 0;
size_t rxbufsize;
check_esp_err(uart_get_buffered_data_len(self->uart_num, &rxbufsize));
if ((flags & MP_STREAM_POLL_RD) && rxbufsize > 0) {
ret |= MP_STREAM_POLL_RD;
}
if ((flags & MP_STREAM_POLL_WR) && 1) { // FIXME: uart_tx_any_room(self->uart_num)
ret |= MP_STREAM_POLL_WR;
}
} else if (request == MP_STREAM_FLUSH) {
// The timeout is estimated using the buffer size and the baudrate.
// Take the worst case assumptions at 13 bit symbol size times 2.
uint32_t baudrate;
check_esp_err(uart_get_baudrate(self->uart_num, &baudrate));
uint32_t timeout = (3 + self->txbuf) * 13000 * 2 / baudrate;
if (uart_wait_tx_done(self->uart_num, timeout) == ESP_OK) {
ret = 0;
} else {
*errcode = MP_ETIMEDOUT;
ret = MP_STREAM_ERROR;
}
} else {
*errcode = MP_EINVAL;
ret = MP_STREAM_ERROR;
}
return ret;
}