-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathCh05.jl
80 lines (57 loc) · 1.84 KB
/
Ch05.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# Julia code to compute the correlation coefficient
using Distributions
using Plots
x = rand(MvNormal([0, 0], [3 1; 1 1]), 1000)
# x = rand(MvNormal([0, 0], [3 0; 0 3]), 1000)
# x = rand(MvNormal([0, 0], [3 2.9; 2.9 3]), 1000)
scatter(x[1, :], x[2, :])
σ₁ = std(x[1, :])
σ₂ = std(x[2, :])
μ₁ = mean(x[1, :])
μ₂ = mean(x[2, :])
Exy = mean(x[1, :] .* x[2, :])
ρ = (Exy - μ₁ * μ₂) / (σ₁ * σ₂)
####################################################################
# Julia code to compute a mean vector.
using Statistics
X = randn(100, 2)
mean(X, dims=1)
####################################################################
# Julia code to compute covariance matrix.
using Statistics
X = randn(100, 2)
cov(X)
####################################################################
# Julia code: Overlay random numbers with the Gaussian contour.
using Distributions
using Plots
p = MvNormal([0, 0], [0.25 0.3; 0.3 1])
X = rand(p, 1000)
x₁ = -2.5:0.01:2.5
x₂ = -3.5:0.01:3.5
f(x₁, x₂) = pdf(p, [x₁, x₂])
scatter(X[1, :], X[2, :], legend=false)
contour!(x₁, x₂, f, linewidth=2)
####################################################################
# Julia code: Gaussian(0,1) --> Gaussian(mu,sigma)
using Distributions
x = rand(MvNormal([0, 0], [1 0; 0 1]), 1000)
Σ = [3 -0.5; -0.5 1]
μ = [1, -2]
y = Σ^(1/2) * x .+ μ
####################################################################
# Julia code: Gaussian(mu,sigma) --> Gaussian(0,1)
using Distributions
y = rand(MvNormal([1, -2], [3 -0.5; -0.5 1]), 100)
μ = mean(y, dims=2)
Σ = cov(y')
x = Σ^(-1/2) * (y .- μ)
####################################################################
# Julia code to perform the principal component analysis
using LinearAlgebra
using Distributions
x = rand(MvNormal([0, 0], [2 -1.9; -1.9 2]), 1000)
Σ = cov(x')
S, U = eigen(Σ)
U[:, 1]
U[:, 2]