forked from t3nsor/codebook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmcmf4.cpp
120 lines (115 loc) · 3.8 KB
/
mcmf4.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
/* Min cost max flow (Edmonds-Karp relabelling + fast heap
*Dijkstra) Based on code by Frank Chu and Igor Naverniouk
* (http://shygypsy.com/tools/mcmf4.cpp)
*
* COMPLEXITY:
* - Worst case: O(min(m*log(m)*flow,
*n*m*log(m)*fcost)) FIELD TESTING:
* - Valladolid 10594: Data Flow
* REFERENCE:
* Edmonds, J., Karp, R. "Theoretical Improvements in
*Algorithmic Efficieincy for Network Flow Problems". This
*is a slight improvement of Frank Chu's implementation.
**/
#define Inf (LLONG_MAX / 2)
#define BUBL \
{ \
t = q[i]; \
q[i] = q[j]; \
q[j] = t; \
t = inq[q[i]]; \
inq[q[i]] = inq[q[j]]; \
inq[q[j]] = t; \
}
#define Pot(u, v) (d[u] + pi[u] - pi[v])
struct MinCostMaxFlow {
typedef long long LL;
int n, qs;
vector<vector<LL>> cap, cost, fnet;
vector<vector<int>> adj;
vector<LL> d, pi;
vector<int> deg, par, q, inq;
// n = number of vertices
MinCostMaxFlow(int n)
: n(n), qs(0), deg(n + 1), par(n + 1), d(n + 1), q(n + 1),
inq(n + 1), pi(n + 1), cap(n + 1, vector<LL>(n + 1)),
cost(cap), fnet(cap), adj(n + 1, vector<int>(n + 1)) {}
// call to add a directed edge. vertices are 0-based
// ALL COSTS MUST BE NON-NEGATIVE
void AddEdge(int from, int to, LL cap_, LL cost_) {
cap[from][to] = cap_;
cost[from][to] = cost_;
}
bool dijkstra(int s, int t) {
fill(d.begin(), d.end(), 0x3f3f3f3f3f3f3f3fLL);
fill(par.begin(), par.end(), -1);
fill(inq.begin(), inq.end(), -1);
d[s] = qs = 0;
inq[q[qs++] = s] = 0;
par[s] = n;
while (qs) {
int u = q[0];
inq[u] = -1;
q[0] = q[--qs];
if (qs)
inq[q[0]] = 0;
for (int i = 0, j = 2 * i + 1, t; j < qs;
i = j, j = 2 * i + 1) {
if (j + 1 < qs && d[q[j + 1]] < d[q[j]])
j++;
if (d[q[j]] >= d[q[i]])
break;
BUBL;
}
for (int k = 0, v = adj[u][k]; k < deg[u];
v = adj[u][++k]) {
if (fnet[v][u] && d[v] > Pot(u, v) - cost[v][u])
d[v] = Pot(u, v) - cost[v][par[v] = u];
if (fnet[u][v] < cap[u][v] &&
d[v] > Pot(u, v) + cost[u][v])
d[v] = Pot(u, v) + cost[par[v] = u][v];
if (par[v] == u) {
if (inq[v] < 0) {
inq[q[qs] = v] = qs;
qs++;
}
for (int i = inq[v], j = (i - 1) / 2, t;
d[q[i]] < d[q[j]]; i = j, j = (i - 1) / 2)
BUBL;
}
}
}
for (int i = 0; i < n; i++)
if (pi[i] < Inf)
pi[i] += d[i];
return par[t] >= 0;
}
// Returns: (flow, total cost) between source s and sink t
// Call this once only. fnet[i][j] contains the flow from
// i to j. Careful, fnet[i][j] and fnet[j][i] could both
// be positive.
pair<LL, LL> mcmf4(int s, int t) {
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
if (cap[i][j] || cap[j][i])
adj[i][deg[i]++] = j;
LL flow = 0;
LL fcost = 0;
while (dijkstra(s, t)) {
LL bot = LLONG_MAX;
for (int v = t, u = par[v]; v != s; u = par[v = u])
bot = min(bot, fnet[v][u] ? fnet[v][u]
: (cap[u][v] - fnet[u][v]));
for (int v = t, u = par[v]; v != s; u = par[v = u])
if (fnet[v][u]) {
fnet[v][u] -= bot;
fcost -= bot * cost[v][u];
} else {
fnet[u][v] += bot;
fcost += bot * cost[u][v];
}
flow += bot;
}
return make_pair(flow, fcost);
}
};