-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelpers.py
112 lines (83 loc) · 4.83 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import re
import pandas as pd
import operator
# Add 'datatype' column that indicates if the record is original wiki answer as 0, training data 1, test data 2, onto
# the dataframe - uses stratified random sampling (with seed) to sample by task & plagiarism amount
# Use function to label datatype for training 1 or test 2
def create_datatype(df, train_value, test_value, datatype_var, compare_dfcolumn, operator_of_compare, value_of_compare,
sampling_number, sampling_seed):
# Subsets dataframe by condition relating to statement built from:
# 'compare_dfcolumn' 'operator_of_compare' 'value_of_compare'
df_subset = df[operator_of_compare(df[compare_dfcolumn], value_of_compare)]
df_subset = df_subset.drop(columns = [datatype_var])
# Prints counts by task and compare_dfcolumn for subset df
#print("\nCounts by Task & " + compare_dfcolumn + ":\n", df_subset.groupby(['Task', compare_dfcolumn]).size().reset_index(name="Counts") )
# Sets all datatype to value for training for df_subset
df_subset.loc[:, datatype_var] = train_value
# Performs stratified random sample of subset dataframe to create new df with subset values
df_sampled = df_subset.groupby(['Task', compare_dfcolumn], group_keys=False).apply(lambda x: x.sample(min(len(x), sampling_number), random_state = sampling_seed))
df_sampled = df_sampled.drop(columns = [datatype_var])
# Sets all datatype to value for test_value for df_sampled
df_sampled.loc[:, datatype_var] = test_value
# Prints counts by compare_dfcolumn for selected sample
#print("\nCounts by "+ compare_dfcolumn + ":\n", df_sampled.groupby([compare_dfcolumn]).size().reset_index(name="Counts") )
#print("\nSampled DF:\n",df_sampled)
# Labels all datatype_var column as train_value which will be overwritten to
# test_value in next for loop for all test cases chosen with stratified sample
for index in df_sampled.index:
# Labels all datatype_var columns with test_value for straified test sample
df_subset.loc[index, datatype_var] = test_value
#print("\nSubset DF:\n",df_subset)
# Adds test_value and train_value for all relevant data in main dataframe
for index in df_subset.index:
# Labels all datatype_var columns in df with train_value/test_value based upon
# stratified test sample and subset of df
df.loc[index, datatype_var] = df_subset.loc[index, datatype_var]
# returns nothing because dataframe df already altered
def train_test_dataframe(clean_df, random_seed=100):
new_df = clean_df.copy()
# Initialize datatype as 0 initially for all records - after function 0 will remain only for original wiki answers
new_df.loc[:,'Datatype'] = 0
# Creates test & training datatypes for plagiarized answers (1,2,3)
create_datatype(new_df, 1, 2, 'Datatype', 'Category', operator.gt, 0, 1, random_seed)
# Creates test & training datatypes for NON-plagiarized answers (0)
create_datatype(new_df, 1, 2, 'Datatype', 'Category', operator.eq, 0, 2, random_seed)
# creating a dictionary of categorical:numerical mappings for plagiarsm categories
mapping = {0:'orig', 1:'train', 2:'test'}
# traversing through dataframe and replacing categorical data
new_df.Datatype = [mapping[item] for item in new_df.Datatype]
return new_df
# helper function for pre-processing text given a file
def process_file(file):
# put text in all lower case letters
all_text = file.read().lower()
# remove all non-alphanumeric chars
all_text = re.sub(r"[^a-zA-Z0-9]", " ", all_text)
# remove newlines/tabs, etc. so it's easier to match phrases, later
all_text = re.sub(r"\t", " ", all_text)
all_text = re.sub(r"\n", " ", all_text)
all_text = re.sub(" ", " ", all_text)
all_text = re.sub(" ", " ", all_text)
return all_text
def create_text_column(df, file_directory='data/'):
'''Reads in the files, listed in a df and returns that df with an additional column, `Text`.
:param df: A dataframe of file information including a column for `File`
:param file_directory: the main directory where files are stored
:return: A dataframe with processed text '''
# create copy to modify
text_df = df.copy()
# store processed text
text = []
# for each file (row) in the df, read in the file
for row_i in df.index:
filename = df.iloc[row_i]['File']
#print(filename)
file_path = file_directory + filename
with open(file_path, 'r', encoding='utf-8', errors='ignore') as file:
# standardize text using helper function
file_text = process_file(file)
# append processed text to list
text.append(file_text)
# add column to the copied dataframe
text_df['Text'] = text
return text_df