forked from as-ideas/ForwardTacotron
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_tacotron.py
127 lines (101 loc) · 5.09 KB
/
gen_tacotron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import argparse
from pathlib import Path
from typing import Tuple, Dict, Any
import torch
from models.fatchord_version import WaveRNN
from models.tacotron import Tacotron
from utils.display import simple_table
from utils.dsp import DSP
from utils.files import read_config
from utils.paths import Paths
from utils.text.cleaners import Cleaner
from utils.text.tokenizer import Tokenizer
def load_taco(checkpoint_path: str) -> Tuple[Tacotron, Dict[str, Any]]:
print(f'Loading tts checkpoint {checkpoint_path}')
checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu'))
config = checkpoint['config']
tts_model = Tacotron.from_config(config)
tts_model.load_state_dict(checkpoint['model'])
print(f'Loaded taco with step {tts_model.get_step()}')
return tts_model, config
def load_wavernn(checkpoint_path: str) -> Tuple[WaveRNN, Dict[str, Any]]:
print(f'Loading voc checkpoint {checkpoint_path}')
checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu'))
config = checkpoint['config']
voc_model = WaveRNN.from_config(config)
voc_model.load_state_dict(checkpoint['model'])
print(f'Loaded wavernn with step {voc_model.get_step()}')
return voc_model, config
if __name__ == '__main__':
# Parse Arguments
parser = argparse.ArgumentParser(description='TTS Generator')
parser.add_argument('--input_text', '-i', default=None, type=str, help='[string] Type in something here and TTS will generate it!')
parser.add_argument('--checkpoint', type=str, default=None, help='[string/path] path to .pt model file.')
parser.add_argument('--config', metavar='FILE', default='config.yaml', help='The config containing all hyperparams. Only'
'used if no checkpoint is set.')
parser.add_argument('--steps', type=int, default=1000, help='Max number of steps.')
# name of subcommand goes to args.vocoder
subparsers = parser.add_subparsers(dest='vocoder')
wr_parser = subparsers.add_parser('wavernn')
wr_parser.add_argument('--overlap', '-o', default=550, type=int, help='[int] number of crossover samples')
wr_parser.add_argument('--target', '-t', default=11_000, type=int, help='[int] number of samples in each batch index')
wr_parser.add_argument('--voc_checkpoint', type=str, help='[string/path] Load in different WaveRNN weights')
gl_parser = subparsers.add_parser('griffinlim')
mg_parser = subparsers.add_parser('melgan')
args = parser.parse_args()
assert args.vocoder in {'griffinlim', 'wavernn', 'melgan'}, \
'Please provide a valid vocoder! Choices: [\'griffinlim\', \'wavernn\', \'melgan\']'
checkpoint_path = args.checkpoint
if checkpoint_path is None:
config = read_config(args.config)
paths = Paths(config['data_path'], config['voc_model_id'], config['tts_model_id'])
checkpoint_path = paths.taco_checkpoints / 'latest_model.pt'
tts_model, config = load_taco(checkpoint_path)
dsp = DSP.from_config(config)
voc_model, voc_dsp = None, None
if args.vocoder == 'wavernn':
voc_model, voc_config = load_wavernn(args.voc_checkpoint)
voc_dsp = DSP.from_config(voc_config)
out_path = Path('model_outputs')
out_path.mkdir(parents=True, exist_ok=True)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
tts_model.to(device)
cleaner = Cleaner.from_config(config)
tokenizer = Tokenizer()
print('Using device:', device)
if args.input_text:
texts = [args.input_text]
else:
with open('sentences.txt', 'r', encoding='utf-8') as f:
texts = f.readlines()
tts_k = tts_model.get_step() // 1000
if args.vocoder == 'griffinlim':
simple_table([('Forward Tacotron', str(tts_k) + 'k'),
('Vocoder Type', 'Griffin-Lim')])
elif args.vocoder == 'melgan':
simple_table([('Forward Tacotron', str(tts_k) + 'k'),
('Vocoder Type', 'MelGAN')])
# simple amplification of pitch
pitch_function = lambda x: x * args.amp
for i, x in enumerate(texts, 1):
print(f'\n| Generating {i}/{len(texts)}')
x = cleaner(x)
x = tokenizer(x)
x = torch.as_tensor(x, dtype=torch.long, device=device).unsqueeze(0)
wav_name = f'{i}_taco_{tts_k}k_{args.vocoder}'
_, m, _ = tts_model.generate(x=x, steps=args.steps)
if args.vocoder == 'melgan':
m = torch.tensor(m).unsqueeze(0)
torch.save(m, out_path / f'{wav_name}.mel')
if args.vocoder == 'wavernn':
m = torch.tensor(m).unsqueeze(0)
wav = voc_model.generate(mels=m,
batched=True,
target=args.target,
overlap=args.overlap,
mu_law=voc_dsp.mu_law)
dsp.save_wav(wav, out_path / f'{wav_name}.wav')
elif args.vocoder == 'griffinlim':
wav = dsp.griffinlim(m)
dsp.save_wav(wav, out_path / f'{wav_name}.wav')
print('\n\nDone.\n')