-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsummarize.py
38 lines (33 loc) · 1.37 KB
/
summarize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from nltk.probability import FreqDist
from nltk.tokenize import RegexpTokenizer
from nltk.corpus import stopwords
import nltk.data
class SimpleSummarizer:
def reorder_sentences( self, output_sentences, inputF ):
output_sentences.sort( lambda s1, s2:
inputF.find(s1) - inputF.find(s2) )
return output_sentences
def get_summarized(self, inputF, num_sentences ):
tokenizer = RegexpTokenizer('\w+')
base_words = [word.lower()
for word in tokenizer.tokenize(inputF)]
words = [word for word in base_words if word not in stopwords.words()]
word_frequencies = FreqDist(words)
most_frequent_words = [pair[0] for pair in
word_frequencies.items()[:100]]
sent_detector = nltk.data.load('tokenizers/punkt/english.pickle')
actual_sentences = sent_detector.tokenize(inputF)
working_sentences = [sentence.lower()
for sentence in actual_sentences]
output_sentences = []
for word in most_frequent_words:
for i in range(0, len(working_sentences)):
if (word in working_sentences[i]
and actual_sentences[i] not in output_sentences):
output_sentences.append(actual_sentences[i])
break
if len(output_sentences) >= num_sentences: break
if len(output_sentences) >= num_sentences: break
return self.reorder_sentences(output_sentences, inputF)
def summarize(self, inputF, num_sentences):
return " ".join(self.get_summarized(inputF, num_sentences))