forked from Neuroinflab/fourspheremodel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalytical_correct.py
275 lines (208 loc) · 7.72 KB
/
analytical_correct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import os
import numpy as np
from scipy.special import lpmv
import parameters as params
import argparse
def V(n):
k = (n+1.) / n
Factor = ( ( r34**n - (r43**(n+1)) ) / ( (k*(r34**n)) + (r43**(n+1)) ) )
num = (s34/k) - Factor
den = s34 + Factor
return (num / den)
def Y(n):
k = n / (n+1.)
Factor = ( ( (r23**n) * k) - V(n)*(r32**(n+1))) / (r23**n + V(n)*(r32**(n+1)))
num = (s23*k) - Factor
den = s23 + Factor
return (num / den)
def Z(n):
k = (n+1.) / n
num = (r12**n - k*Y(n)*(r21**(n+1)) ) / (r12**n + Y(n)*(r21**(n+1)))
return num
def A1(n):
num = (rz1**(n+1))* (Z(n) + s12*((n+1.)/n))
den = s12 - Z(n)
return num / den
def A2(n):
num = A1(n) + (rz1**(n+1))
den = (Y(n)*(r21**(n+1))) + r12**n
return num / den
def B2(n):
return A2(n)*Y(n)
def A3(n):
num = A2(n) + B2(n)
den = r23**n + (V(n)*(r32**(n+1)))
return num / den
def B3(n):
return A3(n)*V(n)
def A4(n):
num = A3(n) + B3(n)
k = (n+1.) / n
den = (k*(r34**n)) + (r43**(n+1))
return k*(num / den)
def B4(n):
return A4(n)* (n / (n+1.))
def H(n, r_ele=params.scalp_rad):
if r_ele < params.brain_rad:
T1 = ((r_ele / params.brain_rad)**n) * A1(n)
T2 = ((rz / r_ele)**(n + 1))
elif r_ele < params.csftop_rad:
T1 = ((r_ele / params.csftop_rad)**n) * A2(n)
T2 = ((params.csftop_rad / r_ele)**(n + 1)) * B2(n)
elif r_ele < params.skull_rad:
T1 = ((r_ele / params.skull_rad)**n) * A3(n)
T2 = ((params.skull_rad / r_ele)**(n + 1)) * B3(n)
elif r_ele <= params.scalp_rad:
T1 = ((r_ele / params.scalp_rad)**n) * A4(n)
T2 = ((params.scalp_rad / r_ele)**(n + 1)) * B4(n)
else:
print("Invalid electrode position")
return
return (T1 + T2)
def adjust_theta():
ele_pos = params.ele_coords
dp_loc = (np.array(src_pos) + np.array(snk_pos)) / 2.
ele_dist = np.linalg.norm(ele_pos, axis=1)
dist_dp = np.linalg.norm(dp_loc)
cos_theta = np.dot(ele_pos, dp_loc) / (ele_dist * dist_dp)
cos_theta = np.nan_to_num(cos_theta)
theta = np.arccos(cos_theta)
return theta
def adjust_phi_angle(p):
ele_pos = params.ele_coords
r_ele = np.sqrt(np.sum(ele_pos ** 2, axis=1))
dp_loc = (np.array(src_pos) + np.array(snk_pos)) / 2.
proj_rxyz_rz = (np.dot(ele_pos, dp_loc) / np.sum(dp_loc **2)).reshape(len(ele_pos),1) * dp_loc.reshape(1, 3)
rxy = ele_pos - proj_rxyz_rz
x = np.cross(p, dp_loc)
cos_phi = np.dot(rxy, x.T) / np.dot(np.linalg.norm(rxy, axis=1).reshape(len(rxy),1), np.linalg.norm(x, axis=1).reshape(1, len(x)))
cos_phi = np.nan_to_num(cos_phi)
phi_temp = np.arccos(cos_phi)
phi = phi_temp
range_test = np.dot(rxy, p.T)
for i in range(len(r_ele)):
for j in range(len(p)):
if range_test[i, j] < 0:
phi[i,j] = 2 * np.pi - phi_temp[i, j]
return phi.reshape(180 * 180)
def decompose_dipole(I):
P = np.array([np.array(src_pos) * I - np.array(snk_pos) * I])
dp_loc = (np.array(src_pos) + np.array(snk_pos)) / 2.
dist_dp = np.linalg.norm(dp_loc)
dp_rad = (np.dot(P, dp_loc) / dist_dp) * (dp_loc / dist_dp)
dp_tan = P - dp_rad
return P, dp_rad, dp_tan
def conductivity(sigma_skull):
s12 = params.sigma_brain / params.sigma_csf
s23 = params.sigma_csf / sigma_skull
s34 = sigma_skull / params.sigma_scalp
return s12, s23, s34
def compute_phi(s12, s23, s34, I):
P, dp_rad, dp_tan = decompose_dipole(I)
adjusted_theta = adjust_theta()
adjusted_phi_angle = adjust_phi_angle(dp_tan) # params.phi_angle_r
dp_loc = (np.array(src_pos) + np.array(snk_pos)) / 2
sign_rad = np.sign(np.dot(P, dp_loc))
mag_rad = sign_rad * np.linalg.norm(dp_rad)
mag_tan = np.linalg.norm(dp_tan) # sign_tan * np.linalg.norm(dp_tan)
coef = H(n)
cos_theta = np.cos(adjusted_theta)
# radial
n_coef = n * coef
rad_coef = np.insert(n_coef, 0, 0)
Lprod = np.polynomial.legendre.Legendre(rad_coef)
Lfactor_rad = Lprod(cos_theta)
rad_phi = mag_rad * Lfactor_rad
# #tangential
Lfuncprod = []
for tt in range(params.theta_r.size):
Lfuncprod.append(np.sum([C * lpmv(1, P_val, cos_theta[tt])
for C, P_val in zip(coef, n)]))
tan_phi = -1 * mag_tan * np.sin(adjusted_phi_angle) * np.array(Lfuncprod)
return (rad_phi + tan_phi) / (4 * np.pi * params.sigma_brain * (rz**2))
parser = argparse.ArgumentParser()
parser.add_argument('--directory', '-d',
default='results',
dest='results',
help='a path to the result directory')
args = parser.parse_args()
if not os.path.exists(args.results):
os.makedirs(args.results)
# scalp_rad = scalp_rad - rad_tol
rz = params.dipole_loc
rz1 = rz / params.brain_rad
r12 = params.brain_rad / params.csftop_rad
r23 = params.csftop_rad / params.skull_rad
r34 = params.skull_rad / params.scalp_rad
r1z = 1. / rz1
r21 = 1. / r12
r32 = 1. / r23
r43 = 1. / r34
I = 1.
n = np.arange(1, 100)
for dipole in params.dipole_list:
print('Now computing for dipole: ', dipole['name'])
src_pos = dipole['src_pos']
snk_pos = dipole['snk_pos']
s12, s23, s34 = conductivity(params.sigma_skull20)
phi_20 = compute_phi(s12, s23, s34, I)
s12, s23, s34 = conductivity(params.sigma_skull40)
phi_40 = compute_phi(s12, s23, s34, I)
s12, s23, s34 = conductivity(params.sigma_skull80)
phi_80 = compute_phi(s12, s23, s34, I)
s12 = s23 = s34 = 1.
phi_lim = compute_phi(s12, s23, s34, I)
with open(os.path.join(args.results,
'Analytical_' + dipole['name'] + '.npz'), 'wb') as f:
np.savez(f, phi_20=phi_20, phi_40=phi_40, phi_80=phi_80, phi_lim=phi_lim)
# s12, s23, s34 = conductivity(params.sigma_skull20)
# phis = []
# dipole = params.dipole_list[0]
# src_pos = dipole['src_pos']
# snk_pos = dipole['snk_pos']
# phis.append(compute_phi(s12, s23, s34, I))
# dipole = params.dipole_list[1]
# src_pos = dipole['src_pos']
# snk_pos = dipole['snk_pos']
# phis.append(compute_phi(s12, s23, s34, I))
# dipole = params.dipole_list[2]
# src_pos = dipole['src_pos']
# snk_pos = dipole['snk_pos']
# phis.append(compute_phi(s12, s23, s34, I))
# src_pos = [-0.05, 0., 7.8] # y = 0 plane
# snk_pos = [0.05, 0., 7.8]
# phis.append(compute_phi(s12, s23, s34, I))
# src_pos = [0, -0.05, 7.8] # x = 0 plane
# snk_pos = [0, 0.05, 7.8]
# phis.append(compute_phi(s12, s23, s34, I))
# src_pos = [0.05, 7.8, 0] # z = 0 plane
# snk_pos = [-0.05, 7.8, 0]
# phis.append(compute_phi(s12, s23, s34, I))
# src_pos = [7.8, -0.05, 0] # z = 0 plane
# snk_pos = [7.8, 0.05, 0]
# phis.append(compute_phi(s12, s23, s34, I))
# src_pos = [7.85, 0.0, 0.0] # radian along x
# snk_pos = [7.75, 0.0, 0.0]
# phis.append(compute_phi(s12, s23, s34, I))
# src_pos = [0.0, 7.85, 0.0] # radial along y
# snk_pos = [0.0, 7.75, 0.0]
# phis.append(compute_phi(s12, s23, s34, I))
# src_pos = [0.0, 0.0, 7.75] # radian along z
# snk_pos = [0.0, 0.0, 7.85]
# phis.append(compute_phi(s12, s23, s34, I))
# f = open(os.path.join(args.results, 'Analytical_correct_all.npz'), 'w')
# np.savez(f, phis[0],phis[1],phis[2],phis[3],phis[4],phis[5],phis[6],phis[7], phis[8], phis[9])
# f.close()
# s12, s23, s34 = conductivity(params.sigma_skull20)
# phi_20 = compute_phi(s12, s23, s34, I)
# print phi_20
# import os
# import matplotlib.pyplot as plt
# plt.contourf(params.theta.reshape(180,180), params.phi_angle.reshape(180,180), phi_20.reshape(180,180), cmap='PRGn')
# plt.colorbar()
# plt.figure()
# numerical = np.load(os.path.join(args.results, 'Numerical_rad.npz'))
# num_20 = numerical['fem_20'].reshape(180, 180)
# plt.contourf(params.theta.reshape(180,180), params.phi_angle.reshape(180,180), num_20.reshape(180,180), cmap='PRGn')
# plt.colorbar()
# plt.show()