-
Notifications
You must be signed in to change notification settings - Fork 134
/
Copy pathprepare_stats.py
120 lines (92 loc) · 4.05 KB
/
prepare_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
import requests
import csv
import codecs
import matplotlib.pyplot as plt
import json
DATA_ROOT = '/Users/martinsf/ai/deep_learning_projects/data'
URL_WORDNET = 'http://image-net.org/archive/words.txt'
IMAGENET_API_WNID_TO_URLS = lambda wnid: f'http://www.image-net.org/api/text/imagenet.synset.geturls?wnid={wnid}'
current_folder = os.path.dirname(os.path.realpath(__file__))
wordnet_filename = URL_WORDNET.split('/')[-1]
wordnet_file_path = os.path.join(current_folder, wordnet_filename)
print(wordnet_file_path)
if not os.path.exists(wordnet_file_path):
print(f'Downloading {URL_WORDNET}')
resp = requests.get(URL_WORDNET)
with open(wordnet_file_path, "wb") as file:
file.write(resp.content)
file.close()
# Downloaded from http://image-net.org/imagenet_data/urls/imagenet_fall11_urls.tgz
url_list_filepath = '/Users/martinsf/ai/datasets/imagenet/fall11_urls.txt'
img_url_dict = dict()
total_urls = 0
flickr_urls = 0
#Go trough the urls list and count urls per class and flickr_urls per class, store the info in csv
with codecs.open(url_list_filepath, 'r', encoding='utf-8', errors='ignore') as f:
it = 0
for line in f:
it += 1
if it % 10000 == 0:
print(it)
row = line.split('\t')
if (len(row) != 2):
continue
id = row[0].split('_')[0]
url = row[1]
if not id in img_url_dict:
img_url_dict[id] = dict(urls = 0, flickr_urls = 0)
img_url_dict[id]['urls'] += 1
total_urls += 1
if 'flickr' in url:
flickr_urls += 1
img_url_dict[id]['flickr_urls'] += 1
wnid_to_class_dict = dict()
with open(wordnet_file_path, "r") as word_list_file:
csv_reader_word_list = csv.reader(word_list_file, delimiter='\t')
for row in csv_reader_word_list:
wnid = row[0]
keywords = row[1]
wnid_to_class_dict[wnid] = keywords
class_info_json_filename = 'imagenet_class_info.json'
class_info_json_filepath = os.path.join(current_folder, class_info_json_filename)
img_counts = []
total_url_counts = []
flickr_url_counts = []
class_info_dict = dict()
with open("classes_in_imagenet.csv", "w") as csv_f:
csv_writer = csv.writer(csv_f, delimiter=",")
csv_writer.writerow(["synid", "class_name", "urls", "flickr_urls"])
for key, val in img_url_dict.items():
class_info_dict[key] = dict(
img_url_count = val['urls'],
flickr_img_url_count = val['flickr_urls'],
class_name = wnid_to_class_dict[key].split(',')[0]
)
print(f'{wnid_to_class_dict[key]} {len(val)}')
total_url_counts.append(val['urls'])
csv_writer.writerow([key, wnid_to_class_dict[key].split(',')[0], val['urls'], val["flickr_urls"]])
flickr_url_counts.append(val['flickr_urls'])
with open(class_info_json_filepath,"w") as class_info_json_f:
json.dump(class_info_dict, class_info_json_f)
csv_writer = csv.writer(class_info_json_f, delimiter=';')
print(f'In total there are {total_urls} img urls and {flickr_urls} flickr urls')
fig, axs = plt.subplots(3,1)
plt.style.use('seaborn')
plt.subplots_adjust(hspace = 0.5)
axs[0].hist(total_url_counts, range=(500,2000), bins=50, rwidth=0.8)
axs[0].set_title('All ImageNet urls')
axs[0].set_xticks([x for x in range(500,2000,150)])
axs[0].set_xlabel("Images per class")
axs[0].set_ylabel("Number of classes")
axs[1].set_title('Flickr ImageNet urls')
axs[1].hist(flickr_url_counts, range=(500,2000), bins=50, rwidth=0.8)
axs[1].set_xticks([x for x in range(500,2000,150)])
axs[1].set_xlabel("Images per class")
axs[1].set_ylabel("Number of classes")
axs[2].set_title('Flickr ImageNet urls')
axs[2].hist(flickr_url_counts, range=(500,2000), bins=50, rwidth=0.8, cumulative=-1)
axs[2].set_xticks([x for x in range(500,2000,150)])
axs[2].set_xlabel("Images per class")
axs[2].set_ylabel("Number of classes")
plt.show()