forked from medema-group/BiG-SCAPE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctions.py
536 lines (432 loc) · 21.5 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
#!/usr/bin/env python
"""
BiG-SCAPE
PI: Marnix Medema [email protected]
Maintainers:
Jorge Navarro [email protected]
Developers:
Jorge Navarro [email protected]
Satria Kautsar [email protected]
Emmanuel (Emzo) de los Santos [email protected]
Functions used by bigscape.py
# License: GNU Affero General Public License v3 or later
# A copy of GNU AGPL v3 should have been included in this software package in LICENSE.txt.
"""
import os
import sys
import json
global verbose
verbose = False
def create_directory(path, kind, clean):
# TODO consider makedirs(path,exists_ok=True)
try:
os.makedirs(path)
except OSError as e:
# 17 (Linux): "[Errno 17] File exists";
# 183 (Windows) "[Error 183] Cannot create a file when that file already exists"
if "Errno 17" in str(e) or "Error 183" in str(e):
print(" " + kind + " folder already exists")
if clean:
print(" Cleaning folder")
for thing in os.listdir(path):
os.remove(os.path.join(path,thing))
else:
print("Error: unexpected error creating " + kind + " folder")
sys.exit(str(e))
def get_anchor_domains(filename):
"""Get the anchor/marker domains from a txt file.
This text file should contain one Pfam id per line.
A second column (separated by a tab) with more comments is allowed"""
domains = set()
try:
with open(filename, "r") as handle:
for line in handle:
# handle comments and empty lines
if line[0] != "#" and line.strip():
# ignore domain versions
domains.add(line.strip().split("\t")[0].split(".")[0])
return domains
except IOError:
print("You have not provided the anchor_domains.txt file.")
print("if you want to make use of the anchor domains in the DSS distance\
metric, make a file that contains a Pfam domain on each line.")
return set()
def get_domain_list(filename):
"""Convert the Pfam string in the .pfs files to a Pfam list"""
domains = []
with open(filename, "r") as handle:
# note: cannot filter the domain version as the BGCs dictionary needs the
# complete Pfam id
domains = handle.readline().strip().split(" ")
return domains
def check_overlap(pfd_matrix, overlap_cutoff):
"""Check if domains overlap for a certain overlap_cutoff.
If so, remove the domain(s) with the lower score."""
delete_list = []
for i in range(len(pfd_matrix)-1):
for j in range(i+1, len(pfd_matrix)):
row1 = pfd_matrix[i]
row2 = pfd_matrix[j]
#check if we are the same CDS
if row1[-1] == row2[-1]:
#check if there is overlap between the domains
if no_overlap(int(row1[3]), int(row1[4]), int(row2[3]), int(row2[4])) == False:
overlapping_aminoacids = overlap(int(row1[3]), int(row1[4]), int(row2[3]), int(row2[4]))
overlap_perc_loc1 = overlap_perc(overlapping_aminoacids, int(row1[4])-int(row1[3]))
overlap_perc_loc2 = overlap_perc(overlapping_aminoacids, int(row2[4])-int(row2[3]))
#check if the amount of overlap is significant
if overlap_perc_loc1 > overlap_cutoff or overlap_perc_loc2 > overlap_cutoff:
if float(row1[1]) >= float(row2[1]): #see which has a better score
delete_list.append(row2)
elif float(row1[1]) < float(row2[1]):
delete_list.append(row1)
for lst in delete_list:
try:
pfd_matrix.remove(lst)
except ValueError:
pass
# for some reason, some coordinates in genbank files have ambiguous
# starting/ending positions for the CDS. In this case we need the
# absolute start position of each domain so the loci start coordinate
# needs to be checked
absolute_start_positions = [] # we have to take care of strandedness of the origin gene
for row in pfd_matrix:
if row[7][0] == "<" or row[7][0] == ">":
row[7] = row[7][1:]
if row[8][0] == "<" or row[8][0] == ">":
row[8] = row[8][1:]
loci_start = int(row[7])
loci_end = int(row[8])
domain_start = int(row[3])
domain_end = int(row[4])
# uses nucleotide coordinates for sorting
width = 3*(domain_end - domain_start)
strand = row[9].split(":")[-1]
if strand == "+":
absolute_start_positions.append(3*domain_start + loci_start)
else:
absolute_start_positions.append(loci_end - 3*domain_start - width)
try:
# sorted by absolute position: env coordinate start + gene locus start
pfd_matrix = [x for (y,x) in sorted(zip(absolute_start_positions,pfd_matrix), key=lambda pair:pair[0])]
except ValueError as e:
print("Something went wrong during the sorting of the fourth column (ValueError): " + str(e))
print(pfd_matrix)
sys.exit()
domains = []
for row in pfd_matrix:
# removing the domain version at this point is not a very good idea
# because we need it complete for hmmalign
domains.append(row[5]) #save the pfam domains for the .pfs file
return pfd_matrix, domains
def write_pfd(pfd_handle, matrix):
for row in matrix:
row = "\t".join(row)
pfd_handle.write(row+"\n")
pfd_handle.close()
def no_overlap(locA1, locA2, locB1, locB2):
"""Return True if there is no overlap between two regions"""
if locA1 < locB1 and locA2 < locB1:
return True
elif locA1 > locB2 and locA2 > locB2:
return True
else:
return False
def overlap_perc(overlap, len_seq):
return float(overlap) / len_seq
def overlap(locA1, locA2, locB1, locB2):
"""Returns the amount of overlapping nucleotides"""
if locA1 < locB1:
cor1 = locA1
else:
cor1 = locB1
if locA2 > locB2:
cor2 = locA2
else:
cor2 = locB2
total_region = cor2 - cor1
sum_len = (locA2 - locA1) + (locB2 - locB1)
return sum_len - total_region
def BGC_dic_gen(filtered_matrix):
"""Generates the: { 'general_domain_name_x' : ['specific_domain_name_1',
'specific_domain_name_2'] } part of the BGCs variable."""
# It would be tempting to do `bgc_dict = defaultdict(list)` but then the
# dictionary keeps the defaultdict definition. Later on in the distance
# calculation function, we do a
# ```try: unshared_occurrences = BGCs[A][unshared_domain]
# except KeyError: unshared_occurrences = BGCs[B][unshared_domain]```
# Problem is the `try` would always be successful because of defaultdict and
# an empty list is added for the unshared_domain!
bgc_dict = {}
for row in filtered_matrix:
header = row[-1] + ":" + row[3] + ":" + row[4] # add domain positions
try: #Should be faster than performing `if key in dictionary.keys()`
bgc_dict[row[5]].append(header)
except KeyError: # First occurrence of this domain in the cluster
bgc_dict[row[5]] = [header]
return bgc_dict
def save_domain_seqs(filtered_matrix, fasta_dict, domains_folder, outputbase):
"""Write fasta sequences for the domains in the right pfam-domain file"""
for row in filtered_matrix:
domain = row[5]
header = row[-1].strip()
seq = fasta_dict[header] #access the sequence by using the header
domain_file = open(os.path.join(domains_folder, domain + ".fasta"), 'a') #append to existing file
domain_file.write(">{}:{}:{}\n{}\n".format(header, row[3], row[4],
seq[int(row[3])-1:int(row[4])])) #only use the range of the pfam domain within the sequence
domain_file.close()
def write_network_matrix(matrix, cutoffs_and_filenames, include_singletons, clusterNames, bgc_info):
"""
An entry in the distance matrix is currently (all floats):
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
clus1Idx clus2Idx rawD sqrtSim Jac DSS AI rDSSna rDSSa S Sa lcsStartA lcsStartB seedLength reverse
The final row in the network file is currently:
0 1 2 3 4 5 6 7 8 9 10 11 12
clus1 clus2 rawD sqrtSim J DSS AI rDSSna rDSSa S Sa combGrp ShrdGrp
"""
#Open file handles for each cutoff
networkfiles = {}
cutoffs, filenames = zip(*cutoffs_and_filenames)
for cutoff, filename in cutoffs_and_filenames:
networkfiles[cutoff] = open(filename, "w")
networkfiles[cutoff].write("Clustername 1\tClustername 2\tRaw distance\tSquared similarity\tJaccard index\tDSS index\tAdjacency index\traw DSS non-anchor\traw DSS anchor\tNon-anchor domains\tAnchor domains\tCombined group\tShared group\n")
#Dictionaries to keep track of connected nodes, to know which are singletons
clusterSetAllDict = {}
clusterSetConnectedDict = {}
for cutoff in cutoffs:
clusterSetAllDict[cutoff] = set()
clusterSetConnectedDict[cutoff] = set()
for matrix_entry in matrix:
gc1 = clusterNames[int(matrix_entry[0])]
gc2 = clusterNames[int(matrix_entry[1])]
row = [gc1, gc2]
# get AntiSMASH annotations
clus1group = bgc_info[gc1].product
clus2group = bgc_info[gc2].product
# add all the other floats
row.extend(matrix_entry[2:-6])
# add number of anchor/non-anchor domains as integers
row.append(int(matrix_entry[-6]))
row.append(int(matrix_entry[-5]))
# prepare combined group
if clus1group != "" and clus2group != "": #group1, group2
row.append(" - ".join(sorted([clus1group,clus2group])))
elif clus2group != "":
row.append(clus2group)
elif clus1group != "":
row.append(clus1group)
else:
row.append("NA")
# prepare share group (if they indeed share it)
if clus1group == clus2group:
row.append(clus1group)
else:
row.append("")
for cutoff in cutoffs:
clusterSetAllDict[cutoff].add(gc1)
clusterSetAllDict[cutoff].add(gc2)
if row[2] < cutoff:
clusterSetConnectedDict[cutoff].add(gc1)
clusterSetConnectedDict[cutoff].add(gc2)
networkfiles[cutoff].write("\t".join(map(str,row)) + "\n")
#Add the nodes without any edges, give them an edge to themselves with a distance of 0
if include_singletons == True:
for cutoff in cutoffs:
for gc in clusterSetAllDict[cutoff]-clusterSetConnectedDict[cutoff]:
#Arbitrary numbers for S and Sa domains: 1 of each (logical would be 0,0 but
# that could mess re-analysis with divisions-by-zero;
networkfiles[cutoff].write("\t".join([gc, gc, "0", "1", "1", "1", "1", "0", "0", "1", "1", "", ""]) + "\n")
#Close all files
for networkfile in networkfiles.values():
networkfile.close()
def fasta_parser(handle):
"""Parses a fasta file, and stores it in a dictionary.
Only works if there are no duplicate fasta headers in the fasta file"""
fasta_dict = {}
header = ""
for line in handle:
if line[0] == ">":
header=line.strip()[1:]
else:
try:
fasta_dict[header] += line.strip()
except KeyError:
fasta_dict[header] = line.strip()
return fasta_dict
def get_fasta_keys(handle):
"""Parses a fasta file, only stores headers
"""
header_list = []
for line in handle:
if line[0] == ">":
header_list.append(line.strip()[1:])
return header_list
def domtable_parser(gbk, dom_file):
"""Parses the domain table output files from hmmscan"""
##example from domain table output:
# target name accession tlen query name accession qlen E-value score bias # of c-Evalue i-Evalue score bias from to from to from to acc description of target
#------------------- ---------- ----- -------------------- ---------- ----- --------- ------ ----- --- --- --------- --------- ------ ----- ----- ----- ----- ----- ----- ----- ---- ---------------------
#Lycopene_cycl PF05834.8 378 loc:[0:960](-):gid::pid::loc_tag:['ctg363_1'] - 320 3.1e-38 131.7 0.0 1 1 1.1e-40 1.8e-36 126.0 0.0 7 285 33 295 31 312 0.87 Lycopene cyclase protein
#pfd_matrix columns: gbk filename - score - gene id - first coordinate - second coordinate - pfam id - domain name -start coordinate of gene - end coordinate of gene - cds header
pfd_matrix = []
try:
dom_handle = open(dom_file, 'r')
except IOError:
print(" Error! Could not find file " + dom_file)
else:
for line in dom_handle:
if line[0] != "#":
splitline = line.split()
pfd_row = []
pfd_row.append(gbk) #add clustername or gbk filename
pfd_row.append(splitline[13]) #add the score
header_list = splitline[3].split(":")
try:
pfd_row.append(header_list[header_list.index("gid")+1]) #add gene ID if known
except ValueError:
print("No gene ID in " + gbk)
pfd_row.append('')
pfd_row.append(splitline[19])#first coordinate, env coord from
pfd_row.append(splitline[20])#second coordinate, env coord to
#===================================================================
# loc_split = header_list[2].split("]") #second coordinate (of CDS) and the direction
# pfd_row.append(loc_split[1]) #add direction
#===================================================================
pfd_row.append(splitline[1]) #pfam id
pfd_row.append(splitline[0]) #domain name
pfd_row.append(header_list[header_list.index("loc")+1]) #start coordinate of gene
pfd_row.append(header_list[header_list.index("loc")+2]) #end coordinate of gene
pfd_row.append(splitline[3])#cds header
pfd_matrix.append(pfd_row)
return pfd_matrix
def sort_bgc(product):
"""Sort BGC by its type. Uses antiSMASH annotations
(see
https://docs.antismash.secondarymetabolites.org/glossary/#cluster-types)
"""
# TODO: according with current (2021-05) antiSMASH rules:
# prodigiosin and PpyS-KS -> PKS
# CDPS, mycosporine-like -> NRPS
# but they should probably be kept in Others
pks1_products = {'t1pks', 'T1PKS'}
pksother_products = {'transatpks', 't2pks', 't3pks', 'otherks', 'hglks',
'transAT-PKS', 'transAT-PKS-like', 'T2PKS', 'T3PKS',
'PKS-like', 'hglE-KS', 'prodigiosin'}
nrps_products = {'nrps', 'NRPS', 'NRPS-like', 'thioamide-NRP',
'NAPAA'}
ripps_products = {'lantipeptide', 'thiopeptide', 'bacteriocin', 'linaridin',
'cyanobactin', 'glycocin', 'LAP', 'lassopeptide',
'sactipeptide', 'bottromycin', 'head_to_tail', 'microcin',
'microviridin', 'proteusin', 'lanthipeptide', 'lipolanthine',
'RaS-RiPP', 'fungal-RiPP', 'TfuA-related', 'guanidinotides',
'RiPP-like', 'lanthipeptide-class-i', 'lanthipeptide-class-ii',
'lanthipeptide-class-iii', 'lanthipeptide-class-iv',
'lanthipeptide-class-v', 'ranthipeptide', 'redox-cofactor',
'thioamitides', 'epipeptide', 'cyclic-lactone-autoinducer',
'spliceotide', 'RRE-containing', 'crocagin'}
saccharide_products = {'amglyccycl', 'oligosaccharide', 'cf_saccharide',
'saccharide'}
others_products = {'acyl_amino_acids', 'arylpolyene', 'aminocoumarin',
'ectoine', 'butyrolactone', 'nucleoside', 'melanin',
'phosphoglycolipid', 'phenazine', 'phosphonate', 'other',
'cf_putative', 'resorcinol', 'indole', 'ladderane',
'PUFA', 'furan', 'hserlactone', 'fused', 'cf_fatty_acid',
'siderophore', 'blactam', 'fatty_acid', 'PpyS-KS', 'CDPS',
'betalactone', 'PBDE', 'tropodithietic-acid', 'NAGGN',
'halogenated', 'pyrrolidine', 'mycosporine-like'}
# PKS_Type I
if product in pks1_products:
return("PKSI")
# PKS Other Types
elif product in pksother_products:
return("PKSother")
# NRPs
elif product in nrps_products:
return("NRPS")
# RiPPs
elif product in ripps_products:
return("RiPPs")
# Saccharides
elif product in saccharide_products:
return("Saccharides")
# Terpenes
elif product == 'terpene':
return("Terpene")
# PKS/NRP hybrids
elif len(product.split(".")) > 1:
#print(" Possible hybrid: (" + cluster + "): " + product)
# cf_fatty_acid category contains a trailing empty space
subtypes = set(s.strip() for s in product.split("."))
if len(subtypes - (pks1_products | pksother_products | nrps_products)) == 0:
if len(subtypes - nrps_products) == 0:
return("NRPS")
elif len(subtypes - (pks1_products | pksother_products)) == 0:
return("PKSother") # pks hybrids
else:
return("PKS-NRP_Hybrids")
elif len(subtypes - ripps_products) == 0:
return("RiPPs")
elif len(subtypes - saccharide_products) == 0:
return("Saccharide")
else:
return("Others") # other hybrid
# Others
elif product in others_products:
return("Others")
# ??
elif product == "":
# No product annotation. Perhaps not analyzed by antiSMASH
return("Others")
else:
print(" Warning: unknown product '{}'".format(product))
return("Others")
def write_parameters(output_folder, parameters):
"""Write a file with all the details of the run.
Will overwrite previous versions"""
with open(os.path.join(output_folder,"parameters.txt"), "w") as parameters_file:
parameters_file.write(" ".join(parameters))
def generatePfamColorsMatrix(pfam_domain_colors):
'''
:param pfam_domain_colors: tab-delimited file
:return: dictionary with pfam ID as key and rgb colors as value
'''
pfam_colors = {}
if os.path.isfile(pfam_domain_colors):
print(" Found file with Pfam domain colors")
with open(pfam_domain_colors, "r") as cat_handle:
for line in cat_handle:
# handle comments and empty lines
if line[0] != "#" and line.strip():
row = line.strip().split("\t")
domain = row[0]
rgb = row[-1]
pfam_colors[domain] = rgb
else:
print(" File pfam_domain_colors was NOT found")
return pfam_colors
def add_to_bigscape_results_js(module_name, subs, result_js_file):
bigscape_results = [];
if os.path.isfile(result_js_file):
with open(result_js_file, "r") as bs_js:
line = bs_js.read()
assert line.startswith("var bigscape_results = ")
assert line.endswith(";")
bigscape_results = json.loads(line[23:-1])
bigscape_results.append({ "label" : module_name, "networks" : subs })
with open(result_js_file, "w") as bs_js:
bs_js.write("var bigscape_results = {};".format(json.dumps(bigscape_results, indent=4, separators=(',', ':'), sort_keys=True)))
def get_composite_bgc_similarities(bgcs_1, bgcs_2, sim_matrix):
num_pairs = 0
sum_sim = 0.00
min_sim = (1.00, -1, -1)
max_sim = (0.00, -1, -1)
for bgc_1 in bgcs_1:
for bgc_2 in bgcs_2:
sim = 0.00 if (bgc_1 == bgc_2) else (sim_matrix[bgc_1][bgc_2] if ((bgc_1 in sim_matrix) and (bgc_2 in sim_matrix[bgc_1])) else sim_matrix[bgc_2][bgc_1])
sum_sim += sim
if (sim < min_sim[0]):
min_sim = (sim, bgc_1, bgc_2) if (bgc_2 > bgc_1) else (sim, bgc_2, bgc_1)
if (sim > max_sim[0]):
max_sim = (sim, bgc_1, bgc_2) if (bgc_2 > bgc_1) else (sim, bgc_2, bgc_1)
num_pairs += 1
return ((sum_sim / num_pairs), min_sim, max_sim) # let it throw infinite division error by itself