-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathherdingspikes.py
914 lines (817 loc) · 36.8 KB
/
herdingspikes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 23 11:17:38 2014
@author: Martino Sorbaro
@author: Matthias Hennig
"""
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
from sklearn import __version__ as skvers
from sklearn.cluster import MeanShift
from sklearn.decomposition import PCA
from sklearn import svm, mixture
from sklearn.metrics.pairwise import euclidean_distances
from scipy.stats import itemfreq
import h5py
import warnings
from sys import stdout
from distutils.version import StrictVersion
if StrictVersion(skvers) < StrictVersion('0.17'):
raise Warning('Sklearn version >= 0.17 may be needed')
def ImportInterpolated(filename, shapesrange=None):
"""Helper function to read spike data from an hdf5 file."""
g = h5py.File(filename, 'r')
A = spikeclass(np.array(g['Locations'].value, dtype=float).T)
A.LoadTimes(np.floor(g['Times'].value).astype(int))
A.SetSampling(g['Sampling'].value)
if shapesrange is None:
A.LoadShapes(np.array(g['Shapes'].value).T)
else:
A.LoadShapes(
np.array(g['Shapes'].value).T[shapesrange[0]:shapesrange[1]])
g.close()
A._spikeclass__expinds = np.array([0])
return A
def ImportInterpolatedList(filenames, shapesrange=None):
""" Helper function to read in spike data from a list of hdf5 files.
Returns a class object which keeps track of the
indices where each file begins.
"""
loc = np.array([[], []], dtype=float)
t = np.array([], dtype=int)
sh = np.array([], dtype=int)
inds = np.zeros(len(filenames) + 1, dtype=int)
s = np.zeros(len(filenames))
for i, f in enumerate(filenames):
g = h5py.File(f, 'r')
print('Reading file ' + f)
loc = np.append(loc, g['Locations'].value.T, axis=1)
inds[i] = len(t) # store index of first spike
t = np.append(t, np.floor(g['Times'].value).astype(int))
s[i] = g['Sampling'].value
if shapesrange is None:
sh = np.append(sh, np.array(g['Shapes'].value))
shLen = g['Shapes'].shape[1]
else:
sh = np.append(sh, np.array(g['Shapes'].value)[:, shapesrange[0]:shapesrange[1]])
g.close()
inds[len(filenames)] = len(t)
if shapesrange is None:
sh = np.reshape(sh, (len(t), shLen))
else:
sh = np.reshape(sh, (len(t), shapesrange[1] - shapesrange[0]))
if len(np.unique(s)) > 1:
raise Warning('Data sets have different sampling rates\n' + str(s))
A = spikeclass(loc)
A.LoadTimes(t)
A.SetSampling(s[0])
A.LoadShapes(sh.T)
A._spikeclass__expinds = inds
return A
def _normed(X):
return X / np.max(np.abs(X), axis=0)
class spikeclass(object):
"""A class containing code to work on 2d data with the Mean Shift
clustering algorithms and various filters.
Can be initialised in three ways:
-- with a string pointing to an hdf5 file. This file must have been
previously saved using this class.
-- with a single [2,N] array containing raw data.
-- with two arguments: a [2,Ndata] array containing data and a [Ndata]
array containing, for every point,
the ID of the cluster it belongs to.
"""
def __init__(self, *args, **kwargs):
if len(args) == 1:
if isinstance(args[0], str):
g = h5py.File(args[0], 'r')
self.__data = np.array(g['data'].value, dtype=float)
self.__ClusterID = np.array(g['cluster_id'].value, dtype=int) \
if 'cluster_id' in g.keys() else np.array([])
self.__c = np.array(g['centres'].value, dtype=float) \
if 'centres' in g.keys() else np.array([])
if self.__c.shape[1]==2:
self.__c = self.__c.T
self.__times = np.array(g['times']) \
if 'times' in g.keys() else np.array([])
self.__shapes = np.array(g['shapes']) \
if 'shapes' in g.keys() else np.array([])
self.__colours = np.array([])
self.__sampling = g['Sampling'].value \
if 'Sampling' in g.keys() else np.array([])
self.__expinds = g['expinds'].value \
if 'expinds' in g.keys() else np.array([0])
self.__clsizes = []
g.close()
else:
givendata = args[0]
ndata = np.shape(givendata)[1]
if np.shape(givendata) != (2, ndata):
raise ValueError('Data must be a (2,N) array')
self.__data = givendata
self.__ClusterID = np.array([])
self.__c = []
self.__times = np.array([])
self.__shapes = np.array([])
self.__colours = np.array([])
self.__sampling = []
self.__expinds = np.array([0])
self.__clsizes = []
elif len(args) == 2:
ndata = args[0].shape[1]
if np.shape(args[0]) != (2, ndata):
raise ValueError('Data must be a (2,N) array')
self.__data = args[0]
self.__c = np.zeros([2, np.max(args[1]) + 1])
self.__ClusterID = np.array(args[1])
self.__times = np.array([])
self.__shapes = np.array([])
self.__colours = np.array([])
self.__sampling = []
self.__expinds = np.array([0])
self.__clsizes = [] # buffer those for speed
else:
raise ValueError(
'Can be initialised with 1 argument (the data' +
' set or a file) or 2 arguments (data, ClusterID)')
self.Backup()
def Colours(self):
if np.shape(self.__colours)[0] != self.NClusters():
colours = plt.cm.spectral(np.random.permutation(np.linspace(
0, 1, num=self.NClusters())))
colours = np.append(np.array([0, 0, 0, 0.5]), colours[:-1])
self.__colours = np.reshape(colours, (self.NClusters(), 4))
return self.__colours
# PLOTTING METHODS
def LogHistPlot(self, save=None, binstep=0.2, figsize=(8, 8),
ax=None, inds=None):
"""Plots a density histogram."""
if figsize is not None and ax is None:
plt.figure(figsize=figsize)
if ax is None:
ax = plt.subplot(111)
ax.set_axis_bgcolor('black')
dr = np.array([self.__data[0].min(), self.__data[1].min(),
self.__data[0].max(), self.__data[1].max()])
dr = np.hstack((np.floor(dr[:2]), np.ceil(dr[2:])))
if inds is None:
n, xb, yb = np.histogram2d(
self.__data[0], self.__data[1],
bins=(np.arange(dr[0], dr[2], binstep),
np.arange(dr[1], dr[3], binstep)))
else:
n, xb, yb = np.histogram2d(
self.__data[0][inds], self.__data[1][inds],
bins=(np.arange(dr[0], dr[2], binstep),
np.arange(dr[1], dr[3], binstep)))
rateMasked = np.ma.array(n, mask=(n <= 0))
cmap = plt.cm.RdBu_r
cmap.set_bad('k')
plt.imshow(np.ma.log10(rateMasked).T, cmap=cmap,
extent=[xb.min(), xb.max(), yb.min(), yb.max()],
interpolation='none', origin='lower')
plt.axis('equal')
plt.xlim((xb.min(), xb.max()))
plt.ylim((yb.min(), yb.max()))
if save is not None:
plt.savefig(save)
return ax
def DataPlot(self, save=None, show_max=int(1e4), figsize=(8, 8), ax=None):
"""Plots the current data. If clustering was performed,
the cluster centres and ID (colour) are plotted,
otherwise a black and white scatterplot is plotted."""
if figsize is not None and ax is None:
plt.figure(figsize=figsize)
if ax is None:
ax = plt.subplot(111)
ax.set_axis_bgcolor('black')
dr = np.array([self.__data[0].min(), self.__data[1].min(),
self.__data[0].max(), self.__data[1].max()])
dr = np.hstack((np.floor(dr[:2]), np.ceil(dr[2:])))
if show_max is None:
show_max = self.NData()
if np.size(self.__ClusterID):
ax.scatter(self.__data[0][:show_max], self.__data[1][:show_max],
c=self.Colours()[self.__ClusterID[:show_max]],
marker='o', s=2, edgecolors='none', alpha=0.8)
else:
ax.scatter(self.__data[0][:show_max], self.__data[1][:show_max],
marker=',', c='w', s=2, edgecolors='none', alpha=0.8)
ax.set_aspect('equal')
ax.set_xlim([dr[0], dr[2]])
ax.set_ylim([dr[1], dr[3]])
if save is not None:
plt.savefig(save)
return ax
def PlotRegion(self, dataWindow, save=None, show_max=None,
figsize=(8, 8), ax=None):
clInds = self.CropClusters(dataWindow, remove=False)
spInds, unique_spLabels = self.Crop(dataWindow, remove=False)
clocs = self.ClusterLoc()[:2, clInds]
unique_inds = self.ClusterID()[spInds]
if figsize is not None and ax is None:
plt.figure(figsize=figsize)
if ax is None:
ax = plt.gca()
ax.set_axis_bgcolor('black')
if show_max is None:
show_max = len(spInds)
ax.scatter(self.__data[0, spInds[:show_max]],
self.__data[1, spInds[:show_max]],
c=self.Colours()[unique_inds[:show_max]], marker='o',
s=5, edgecolors='none', alpha=0.8)
ax.set_aspect('equal')
if len(clInds) < 100:
clsizes = [np.sum(self.__ClusterID == c) for c in clInds]
for i, c in enumerate(clInds):
plt.annotate(s=str(i), xy=(clocs[0, i],
clocs[1, i]), color='w')
plt.scatter(clocs[0], clocs[1], s=clsizes, alpha=0.5, c='grey')
plt.grid('off')
plt.xlim((dataWindow[0], dataWindow[1]))
plt.ylim((dataWindow[2], dataWindow[3]))
def SpikesInCluster(self, c):
return self.__ClusterID == c
def ShapesPlot(self, clusters=None, save=None):
"""Plots the shapes of up to 12 clusters."""
if clusters is None:
clusters = range(self.NClusters())
if len(clusters) > 12:
warnings.warn("Only the first 12 of the given clusters are shown")
clusters = clusters[:12]
plt.figure(1, figsize=(20, 2.5))
ax = plt.subplot(111, frameon=False)
ax.grid(which='major', axis='x', linewidth=1,
linestyle='-', color='0.75')
ax.grid(which='major', axis='y', linewidth=1,
linestyle='-', color='0.75')
sl = 1.0 * np.shape(self.__shapes)[0]
for ic, c in enumerate(clusters):
myShapes = self.__shapes[:, self.SpikesInCluster(c)]
plInds = range(np.min([30, myShapes.shape[1]]))
[plt.plot(ic + np.arange(sl) / sl - .5, myShapes[:, i],
color=self.Colours()[c], alpha=0.2) for i in plInds]
plt.plot(ic + np.arange(sl) / sl - .5, np.mean(myShapes, axis=1),
'-', color='k', lw=2.5)
plt.xlim((-.5, 11.5))
plt.yticks([])
plt.xticks(np.arange(np.min((len(clusters), 12))))
ax.set_xticklabels(clusters)
plt.xlabel('Cluster ID')
plt.grid(0)
if save is not None:
plt.savefig(save)
# GET AND SET METHODS
def NData(self):
"""Returns the current number of datapoints."""
return np.shape(self.__data)[1]
def NClusters(self):
"""Returns the current number of clusters,
or 0 if no clustering was performed."""
if np.size(self.__ClusterID):
return np.shape(self.__c)[1]
else:
return 0
def Locations(self):
"""Returns the data set."""
return self.__data
def Shapes(self):
"""Returns the shapes set."""
return self.__shapes
def Times(self):
"""Returns the times set."""
return self.__times
def ClusterID(self):
"""Returns an array containing the id of the cluster
every data point belongs to."""
return self.__ClusterID
def ClusterLoc(self):
"""Returns an array containing the locations of the cluster centres."""
return np.array(self.__c)
def ClusterSizes(self):
"""Returns an array containing the number of points in each cluster."""
if not any(self.__clsizes):
self.__clsizes = np.zeros(self.NClusters())
tmp = itemfreq(self.__ClusterID)
self.__clsizes[tmp[:, 0]] = tmp[:, 1]
return self.__clsizes
def Sampling(self):
"""Returns the sampling rate."""
return self.__sampling
def LoadShapes(self, shapes):
"""Loads a KxN array, where K is the length of a single wave
and N is the number of spikes, in the shapes vector."""
assert np.size(np.shape(shapes)) == 2
assert np.shape(shapes)[1] == self.NData()
self.__shapes = np.array(shapes)
def LoadTimes(self, times):
"""Loads a vector of spike times."""
assert np.size(np.shape(times)) == 1
assert np.shape(times)[0] == self.NData()
self.__times = np.array(times, dtype=int)
def SetSampling(self, s):
"""Sets the value of the sampling rate for internal usage."""
self.__sampling = s
def ExperimentIndices(self, i):
"""Returns a pair of indices denoting the start and end
of an experiment. Can currently only be used if data from multiple
experiments is read with the helper function ImportInterpolatedList."""
if i+1<len(self.__expinds):
final = self.__expinds[i+1]
elif i+1==len(self.__expinds):
final = self.NData()
else:
raise ValueError('There are only '+len(self.__expinds)+' datasets.')
return np.arange(self.__expinds[i],self.__expinds[i+1])
def ClusterIndices(self, n, exper=None):
raise NotImplementedError()
# TO BE TESTED
# idx = np.where(self.__ClusterID == n)[0]
# if exper is not None:
# if exper + 1 < len(self.__indices):
# endind = self.__expinds[i+1]
# startind = self.__expinds[i]
# elif exper + 1 == len(self.__indices):
# endind = self.NData()
# startind = self.__expinds[i]
# else:
# raise ValueError('There are only ' + len(self.__indices) +
# ' datasets.')
# idx = idx[idx >= startind]
# idx = idx[idx < endind]
# return idx
def ExperimentHeads(self):
return self.__expinds
# SAVE
def Save(self, string, compression=None):
"""Saves data, cluster centres and ClusterIDs to a hdf5 file.
Offers compression of the shapes, 'lzf'
appears a good trade-off between speed and performance.'"""
g = h5py.File(string, 'w')
g.create_dataset("data", data=self.__data)
g.create_dataset("expinds", data=self.__expinds)
if self.__c != np.array([]):
g.create_dataset("centres", data=self.__c)
if self.__ClusterID != np.array([]):
g.create_dataset("cluster_id", data=self.__ClusterID)
if self.__times != np.array([]):
g.create_dataset("times", data=self.__times)
if self.__shapes != np.array([]):
g.create_dataset("shapes",
data=self.__shapes,
compression=compression)
if self.__sampling:
g.create_dataset("Sampling", data=self.__sampling)
g.close()
# CLUSTERING AND ANALYSIS
def AlignShapes(self):
"""Re-aligns the peaks of the spike shapes. This can reduce spurious
clustering at low sampling rates. Note the original shapes are
overwritten and the resulting array is zero-padded at start and end.
"""
peaks = np.argmin(self.Shapes(), axis=0)
ap = int(np.median(peaks))
peaks = -np.argmin(self.Shapes()[ap - 2:ap + 2], axis=0) + 1
alShapes = np.insert(
self.Shapes(),
[0, 0, self.Shapes().shape[0], self.Shapes().shape[0]],
0, axis=0)
for d in np.arange(-2, 2):
idxd = peaks == d
alShapes[:, idxd] = np.roll(alShapes[:, idxd], d, axis=0)
self.LoadShapes(alShapes)
def ShapePCA(self, ncomp=None, white=False, return_exp_var=False, offset=0, upto=0):
"""Compute PCA projections of spike shapes.
If there are more than 1Mio data points, randomly sample 1Mio shapes and compute PCA from this subset only. Projections are then returned for all shapes.
Arguments:
ncomp : the number of components to return
white : Perform whitening of data if set to True
return_exp_var : also return ratios of variance explained
offset : number of frames to ignore at the beginning of spike shapes (at high sampling rates shapes may start quite early)
upto : ignore frames beyond this value (default 0, use the whole shape)
Returns:
fit : Projections for all shapes and the number of chosen dimensions.
p.explained_variance_ratio_ : ratios of variance explained if return_exp_var==True
"""
if ~upto:
upto = self.Shapes().shape[0]
print("Starting sklearn PCA...")
stdout.flush()
p = PCA(n_components=ncomp, whiten=white)
if self.NData() > 1e6:
print(str(self.NData()) +
" spikes, using 1Mio shapes randomly sampled...")
inds = np.random.choice(self.NData(), int(1e6), replace=False)
p.fit(self.Shapes()[offset:upto, inds].T)
# compute projections
fit = p.transform(self.Shapes()[offset:upto, :].T).T
else:
print("using all " + str(self.NData()) + " shapes...")
fit = p.fit_transform(self.Shapes()[offset:upto, :].T).T
print("done.")
stdout.flush()
if return_exp_var:
retval = (fit, p.explained_variance_ratio_)
else:
retval = fit
return retval
def CombinedMeanShift(self, h, alpha,
PrincComp=None,
njobs=-2,
mbf=1):
"""Performs the scikit-learn Mean Shift clustering.
Arguments:
h -- the bandwidth
alpha -- the weight of the principal components as compared
to the spatial data.
PrincComp -- used to pass already-computed principal components
njobs -- the number of processes to be used (default: n. of CPU - 1)
mbf -- the minimum number of items in a seed"""
MS = MeanShift(bin_seeding=True, bandwidth=h, cluster_all=True,
min_bin_freq=mbf, n_jobs=njobs)
if PrincComp is None:
PrincComp = self.ShapePCA(2)
print("Starting sklearn Mean Shift... ")
stdout.flush()
fourvector = np.vstack((self.__data, alpha * PrincComp))
MS.fit_predict(fourvector.T)
self.__ClusterID = MS.labels_
self.__c = MS.cluster_centers_.T
self.__clsizes = itemfreq(self.__ClusterID)[:, 1]
print("done.")
stdout.flush()
# FILTERS
def RemoveData(self, newn):
"""Randomly chooses datapoints and deletes all the others
Arguments:
newn -- the number of datapoints to be kept"""
self.Backup()
initialn = self.NData()
if newn < self.NData():
ind = np.random.choice(range(self.NData()),
size=newn, replace=False)
self.KeepOnly(ind)
print('RemoveData removed ' +
str(initialn - self.NData()) +
' datapoints.')
else:
print('RemoveData: No points were discarded.')
# A Dangerous Method. Do not use more than once.
# Also, I think it's better not to use it in combination with ReduceData
def FilterLowDensity(self, threshold, nbins=[400, 400]):
"""Bins points in 100 bins per axis and deletes points
in bins with number of points <= threshold.
Returns an array containing the indices corresponding to KEPT data.
"""
self.Backup()
hist, bx, by = np.histogram2d(self.__data[0], self.__data[1], nbins)
# the *1.001 is needed to include the rightmost and topmost points
# in the bins ... bad coding indeed.
binspanx = (np.max(self.__data[0]) -
np.min(self.__data[0])) / nbins[0] * 1.001
binspany = (np.max(self.__data[1]) -
np.min(self.__data[1])) / nbins[1] * 1.001
nbx = ((self.__data[0] - np.min(self.__data[0])) //
binspanx).astype(int)
nby = ((self.__data[1] - np.min(self.__data[1])) //
binspany).astype(int)
initialn = self.NData()
ind = np.where(hist[nbx, nby] > threshold)[0]
self.KeepOnly(ind)
print('FilterLowDensity removed ' +
str(initialn - self.NData()) + ' datapoints.')
return ind
def FilterSmallClusters(self, threshold):
"""Removes all datapoints belonging to clusters with 'threshold'
or less datapoints."""
self.Backup()
numclus = self.NClusters()
initialdata = self.NData()
sizes = self.ClusterSizes()
# create a conversion table to get rid of gaps in cluster IDs
c_ind_kept = np.where(sizes >= threshold)[0]
newID = -np.ones(numclus, dtype=np.int)
newID[c_ind_kept] = np.array(range(len(c_ind_kept)))
# update temporarily the ClusterID vector
self.__ClusterID = newID[self.__ClusterID]
# delete data whose cluster was deleted, and clusters
d_ind_kept = np.where(self.__ClusterID != -1)[0]
self.KeepOnly(d_ind_kept)
self.__ClusterID = self.__ClusterID[d_ind_kept]
self.__c = self.__c[:, c_ind_kept]
print('FilterSmallClusters removed ' +
str(numclus - self.NClusters()) +
' clusters and ' + str(initialdata - self.NData()) +
' datapoints.')
return d_ind_kept
def CropClusters(self, rectangle, outside=False, remove=True):
"""Keeps only datapoints belonging to clusters whose centres are
inside the relevant window, or outside, if outside=True is passed.
If remove=False, returns the IDs of the clusters in the area,
without removing the rest."""
(xmin, xmax, ymin, ymax) = rectangle
numclus = self.NClusters()
initialdata = self.NData()
cx, cy = self.__c[:2]
# create a conversion table to get rid of gaps in cluster IDs
if not outside:
condition = [x & y & z & w for (x, y, z, w) in
zip(cx <= xmax, cx >= xmin, cy <= ymax, cy >= ymin)]
else:
condition = [-(x & y & z & w) for (x, y, z, w) in
zip(cx <= xmax, cx >= xmin, cy <= ymax, cy >= ymin)]
c_ind_kept = np.where(condition)[0]
if remove:
newID = -np.ones(numclus, dtype=np.int)
newID[c_ind_kept] = np.array(range(len(c_ind_kept)))
self.Backup()
# update temporarily the ClusterID vector
self.__ClusterID = newID[self.__ClusterID]
# delete data whose cluster was deleted, and clusters
d_ind_kept = np.where(self.__ClusterID != -1)[0]
self.KeepOnly(d_ind_kept)
self.__ClusterID = self.__ClusterID[d_ind_kept]
self.__c = self.__c[:, c_ind_kept]
print('CropClusters removed ' + str(numclus - self.NClusters()) +
' clusters and ' + str(initialdata - self.NData()) +
' datapoints.')
return c_ind_kept
def Crop(self, rectangle, outside=False, remove=True):
"""Keeps only datapoints inside the relevant window,
or outside, if outside=True is passed.
If remove=False, returns but doesn't remove the spikes.
Returns: the indices of spikes and of clusters in the area."""
(xmin, xmax, ymin, ymax) = rectangle
dx, dy = self.__data
numclus = self.NClusters()
initialdata = self.NData()
if not outside:
condition = [x & y & z & w for (x, y, z, w) in
zip(dx <= xmax, dx >= xmin, dy <= ymax, dy >= ymin)]
else:
condition = [-(x & y & z & w) for (x, y, z, w) in
zip(dx <= xmax, dx >= xmin, dy <= ymax, dy >= ymin)]
d_ind_kept = np.where(condition)[0]
c_ind_kept = []
if remove:
if numclus > 0:
cid_kept_all = self.__ClusterID[d_ind_kept]
c_ind_kept = np.unique(cid_kept_all)
newID = -np.ones(numclus, dtype=np.int)
newID[c_ind_kept] = np.array(range(len(c_ind_kept)))
# update temporarily the ClusterID vector
self.__ClusterID = newID[self.__ClusterID]
# delete data whose cluster was deleted, and clusters
self.__ClusterID = self.__ClusterID[d_ind_kept]
self.__c = self.__c[:, c_ind_kept]
self.Backup()
self.KeepOnly(d_ind_kept)
print('Crop removed ' + str(numclus - self.NClusters()) +
' clusters and ' + str(initialdata - self.NData()) +
' datapoints.')
return d_ind_kept, c_ind_kept
# UTILITY
def UpdateExperimentIndices(self, myInds):
"""This is used when applying a filter, to keep track
of the indices at which new stimulation protocols begin"""
if len(self.__expinds) > 1:
for n, i in enumerate(self.__expinds[1:-1]):
self.__expinds[n + 1] = np.where(myInds >= i)[0][0]
self.__expinds[-1] = len(myInds)-1
print('New experiment indices: ' + str(self.__expinds))
def KeepOnly(self, ind_kept):
"""This is used to remove datapoints that were filtered out
and update the arrays. When the data are clustered, more
updates need to be done"""
# does not act on clusters!
self.__data = self.__data[:, ind_kept]
if np.size(self.__shapes):
self.__shapes = self.__shapes[:, ind_kept]
if np.size(self.__times):
self.__times = self.__times[ind_kept]
self.UpdateExperimentIndices(ind_kept)
def Backup(self):
"""Creates a checkpoint, to be used for a subsequent
call to UndoLast()"""
self.__backup = {0: self.__data, 1: self.__ClusterID,
2: self.__c, 3: self.__shapes, 4: self.__times}
def UndoLast(self):
"""The object restores the data as it was before
the last call of a filter, or Backup()."""
self.__data, self.__ClusterID, self.__c, self.__shapes, \
self.__times = self.__backup[0], self.__backup[1], \
self.__backup[2], self.__backup[3], self.__backup[4]
# OTHER
def QualityMeasures(self, scorePCA=None, ncomp=None):
return QualityMeasures(self, scorePCA, ncomp)
def ShapeClassifier(self):
return ShapeClassifier(self)
# A separate class to build a classifier.
class ShapeClassifier(object):
def __init__(self, spikeobj):
self.spikeobj = spikeobj
def BadShapesByDensity(self, nbins=[64, 64],
percentile=0.5,
maxn=None,
min_thr=5,
normalise=False):
"""Compute the median waveform from sample of events from regions with
low spike density.
"""
l = self.spikeobj.Locations()
hg, bx, by = np.histogram2d(l[0], l[1], nbins)
mindensity = np.min(hg[hg > 0])
density_thr = np.max((np.percentile(hg.flatten(), percentile),
mindensity + min_thr)) # +5 is also arbitrary!
binspanx = (np.max(l[0]) - np.min(l[0])) / nbins[0] * 1.001
binspany = (np.max(l[1]) - np.min(l[1])) / nbins[1] * 1.001
nbx = ((l[0] - np.min(l[0])) // binspanx).astype(int)
nby = ((l[1] - np.min(l[1])) // binspany).astype(int)
indbad = np.where(hg[nbx, nby] <= density_thr)[0]
if maxn is not None:
indbad = np.sort(np.random.permutation(indbad)[:maxn])
if normalise:
badshape = np.median(_normed(self.spikeobj.Shapes()[:, indbad]),
axis=1)
else:
badshape = np.median(self.spikeobj.Shapes()[:, indbad], axis=1)
print("Working with " + str(len(indbad)) +
" examples of bad shapes.")
return badshape, indbad
def GoodShapesByAmplitude(self, amp_thr, maxn=None, normalise=False):
"""Compute the median waveform from sample of events with amplitudes
larger than amp_thr.
"""
fakeampl = -np.min(self.spikeobj.Shapes(), axis=0)
indgood = np.where(fakeampl > amp_thr)[0]
if maxn is not None:
indgood = np.sort(np.random.permutation(indgood)[:maxn])
print("Working with " + str(len(indgood)) +
" examples of good shapes.")
if normalise:
goodshape = np.median(_normed(self.spikeobj.Shapes()[:, indgood]),
axis=1)
else:
goodshape = np.median((self.spikeobj.Shapes()[:, indgood]), axis=1)
return goodshape, indgood
def FitClassifier(self, pcascores, indgood, indbad):
"""Train a classifier to distinguish between two classes of labelled
events. This can be used to remove noise from spike data by providing
examples of good and bad spikes. The function returns a score for each
event.
"""
# create a matrix of waveform PC projections
pcs = np.hstack((pcascores[:, indbad], pcascores[:, indgood]))
# the training labels
# WHY do we use 0 and 1 instead of projections of some kind?
labels = np.append(np.zeros(len(indbad)), np.ones(len(indgood)))
# fit the classifier
classifier = svm.SVC(kernel='rbf', class_weight='balanced')
# use this for sklearn <0.17
# classifier = svm.SVC(kernel='rbf',class_weight='auto')
classifier.fit(pcs.T, labels)
# get the labels for the whole data set
score = classifier.predict(pcascores.T).astype(int)
print("Classified as bad: " + str(np.sum(score == 0)) +
", and as good: " + str(np.sum(score == 1)))
return score
class QualityMeasures(object):
def __init__(self, spikeobj, scorePCA=None, ncomp=None):
if np.size(spikeobj.ClusterID()) == 0:
raise ValueError('No clustering was performed')
self.spikeobj = spikeobj
if scorePCA is None:
scorePCA = self.spikeobj.ShapePCA(ncomp=ncomp, white=True)
self.scorePCA = scorePCA
def Neighbours(self, cl_idx, d, min_neigh_size=0, at_least_one=True):
clocs = self.spikeobj.ClusterLoc()
clsizes = self.spikeobj.ClusterSizes()
dists = (clocs[0] - clocs[0, cl_idx])**2 + \
(clocs[1] - clocs[1, cl_idx])**2
nn = np.where((dists > 0) & (dists < d**2) &
(clsizes >= min_neigh_size))[0]
if (len(nn) == 0) & (at_least_one is True):
nn = np.argsort(dists)[1:]
nn = [nn[np.where(clsizes[nn] > min_neigh_size)[0]][0]]
return nn
def GaussianOverlapGroup(self, clnumbers, mode="both", fit_mode="mixture"):
fourvector = np.vstack((self.spikeobj.Locations(),
self.scorePCA[:4, :]))
fstd = np.std(fourvector, axis=1)
fstd[:2] = 1
fmean = np.mean(fourvector, axis=1)
fmean[:2] = 0
spLabels = self.spikeobj.ClusterID()
inds = []
for j in clnumbers:
inds.append(np.where(spLabels == j)[0])
data = []
if mode == "both":
for ind in inds:
data.append((fourvector[:, ind].T - fmean) / fstd.T)
elif mode == "XY":
for ind in inds:
data.append((fourvector[:2, ind].T - fmean[:2]) / fstd[:2].T)
elif mode == "PCA":
for ind in inds:
data.append((fourvector[2:, ind].T - fmean[2:]) / fstd[2:].T)
else:
raise ValueError("Acceptable modes are 'all', 'PCA' and 'XY'")
return self._data_gaussian_overlap(data, fit_mode) # confusion matrix
def _fit_gaussian_individuals(self, p):
"""
Works like _data_gaussian_overlap, but fits gaussians individually to
clusters, instead of directly fitting a gaussian mixture model.
"""
ncl = len(p)
nData = np.array([p[i].shape[0] for i in range(ncl)])
g = mixture.GMM(n_components=ncl, covariance_type='full',
params='wmc', init_params='w', min_covar=1e-6,
tol=1e-3)
means = np.empty((ncl, p[0].shape[1]))
covars = np.empty((ncl, p[0].shape[1], p[0].shape[1]))
for ic, cluster in enumerate(p):
g_single = mixture.GMM(n_components=1, covariance_type='full',
params='wmc', init_params='w',
min_covar=1e-6, tol=1e-3)
g_single.fit(cluster)
if not g_single.converged_:
raise RuntimeError("One of the fits didn't converge. Sorry.")
means[ic] = g_single.means_[0]
covars[ic] = g_single.covars_[0]
g.converged_ = True
g.means_ = means
g.covars_ = covars
g.weights_ = nData / np.sum(nData)
return g
def _fit_gaussian_mixture(self, p):
ncl = len(p)
nData = np.array([p[i].shape[0] for i in range(ncl)])
# heuristic to prevent bad fits when classes are very unbalanced
if 1. * np.min(nData) / np.max(nData) < 0.5:
nData[:] = np.min(nData)
# pre-compute means and covariance matrices
estCent = np.array([np.mean(p[i], axis=0) for i in range(ncl)])
estCov = np.array([np.cov(p[i].T) for i in range(ncl)])
g = mixture.GMM(n_components=ncl, covariance_type='full', params='wmc',
init_params='w', min_covar=1e-6, tol=1e-3)
g.means_ = np.vstack(estCent)
g.covars_ = estCov
data = np.concatenate([p[i][:nData[i]] for i in range(ncl)])
g.fit(data)
if g.converged_ is False:
print("not converged")
return g
def _data_gaussian_overlap(self, p, fit_mode):
'''
Fit a len(p)-component Gaussian mixture model to a set of clusters,
estimate the cluster overlap and return a confusion matrix, from which
false positives and negatives can be obtained.
Data is provided as list in p, each an array containing PCA projections
or locations or both.
This method is based on:
Hill, Daniel N., Samar B. Mehta, and David Kleinfeld.
Quality metrics to accompany spike sorting of extracellular signals.
Journal of Neuroscience 31.24 (2011): 8699-8705.
From the original description by Hill et al.:
The percent of false positive and false negative errors are estimated
for both classes and stored as a confusion matrix. Error rates are
calculated by integrating the posterior probability of a
misclassification. The integral is then normalized by the number of
events in the cluster of interest.
Returns:
confusion - a confusion matrix, diagonals have false positive, and
off-diagonals false negatives
'''
ncl = len(p)
if fit_mode == "mixture":
g = self._fit_gaussian_mixture(p)
elif fit_mode == "individuals":
g = self._fit_gaussian_individuals(p)
else:
raise ValueError("Acceptable modes are 'mixture' or 'individuals'")
estCent = np.array([np.mean(p[i], axis=0) for i in range(ncl)])
# get responsibilities
pr = []
for i in range(ncl):
pr.append(g.predict_proba(p[i]))
# get indices in case clusters are mixed up
# assign each GMM cluster to the nearest cluster the first two dims
pInds = np.zeros(ncl, dtype=int)
d = euclidean_distances(np.vstack(estCent)[:, :2], g.means_[:, :2])
for i in range(ncl):
ind = np.argmin(d)
pInds[np.floor(ind / ncl).astype(int)] = ind % ncl
d[:, ind % ncl] = 10
d[np.floor(ind / ncl).astype(int)] = 10
# compute the confusion matrix entries
confusion = np.zeros((ncl, ncl))
for i in range(ncl):
# FP
confusion[pInds[i], pInds[i]] = np.sum(
np.mean(pr[i][:, np.setxor1d(i, range(ncl))], axis=0))
# FNs
for j in np.setxor1d(i, range(0, ncl)):
confusion[pInds[i], pInds[j]] = np.sum(pr[j][:, i]) / len(p[i])
return confusion