-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathtrain.py
executable file
·214 lines (189 loc) · 10.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import time
import os
import numpy as np
import torch
from torch.autograd import Variable
from collections import OrderedDict
import fractions
from options.train_options import TrainOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
import util.util as util
from util.visualizer import Visualizer
opt = TrainOptions().parse()
n_frames_G, n_frames_D = opt.n_frames_G, opt.n_frames_D
t_scales = opt.n_scales_temporal
input_nc = opt.input_nc
output_nc = opt.output_nc
visualizer = Visualizer(opt)
### initialize dataset
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
### initialize models
modelG, modelD, flowNet = create_model(opt)
iter_path = os.path.join(opt.checkpoints_dir, opt.name, 'iter.txt')
if opt.continue_train:
try:
start_epoch, epoch_iter = np.loadtxt(iter_path , delimiter=',', dtype=int)
except:
start_epoch, epoch_iter = 1, 0
if epoch_iter > 0:
### initialize dataset again
if opt.serial_batches:
data_loader = CreateDataLoader(opt, epoch_iter)
dataset = data_loader.load_data()
visualizer.vis_print('Resuming from epoch %d at iteration %d' % (start_epoch, epoch_iter))
if start_epoch > opt.niter:
modelG.module.update_learning_rate(start_epoch-1)
modelD.module.update_learning_rate(start_epoch-1)
if start_epoch > opt.niter_step:
data_loader.dataset.update_sequence_length((start_epoch-1)//opt.niter_step)
else:
start_epoch, epoch_iter = 1, 0
total_steps = (start_epoch-1) * dataset_size + epoch_iter
for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
for idx, data in enumerate(dataset):
if total_steps % opt.print_freq == 0:
iter_start_time = time.time()
save_fake = total_steps % opt.display_freq == 0
_, n_frames_total, height, width = data['rgb_video'].size()
n_frames_total = n_frames_total // opt.output_nc
n_frames_load = opt.max_frames_per_gpu
n_frames_load = min(n_frames_load, n_frames_total - n_frames_G + 1)
t_len = n_frames_load + n_frames_G - 1
fake_B_last = None
real_B_all, fake_B_all, flow_ref_all, conf_ref_all = None, None, None, None
real_B_skipped, fake_B_skipped = [None]*t_scales, [None]*t_scales
flow_ref_skipped, conf_ref_skipped = [None]*t_scales, [None]*t_scales
for i in range(0, n_frames_total-t_len+1, n_frames_load):
A_paths = data['A_paths'][i]
nmfc_video = Variable(data['nmfc_video'][:, i*3:(i+t_len)*3, ...]).view(-1, t_len, 3, height, width) # nmfc_video have 3 channels
input_A = nmfc_video
input_B = Variable(data['rgb_video'][:, i*3:(i+t_len)*3, ...]).view(-1, t_len, 3, height, width) # rgb_video has 3 channels
mouth_centers = Variable(data['mouth_centers'][:, i:i+t_len, ...]).view(-1, t_len, 2) if not opt.no_mouth_D else None
eyes_centers = Variable(data['eyes_centers'][:, i:i+t_len, ...]).view(-1, t_len, 2) if opt.use_eyes_D else None
if not opt.no_eye_gaze:
eye_gaze_video = Variable(data['eye_video'][:, i*3:(i+t_len)*3, ...]).view(-1, t_len, 3, height, width) # eye_gaze_video has 3 channels
input_A = torch.cat([nmfc_video, eye_gaze_video], dim=2)
############## Forward Pass ######################
# Identity Embedder and Generator
fake_B, real_A, real_Bp, fake_B_last = modelG(input_A, input_B, fake_B_last)
if i == 0:
fake_B_first = fake_B[0, 0]
real_B_prev, real_B = real_Bp[:, :-1], real_Bp[:, 1:]
flow_ref, conf_ref = flowNet(real_B, real_B_prev) # reference flows and confidences
fake_B_prev = real_B_prev[:, 0:1] if fake_B_last is None else fake_B_last[:, -1:]
if fake_B.size()[1] > 1:
fake_B_prev = torch.cat([fake_B_prev, fake_B[:, :-1].detach()], dim=1)
if mouth_centers is not None:
mouth_centers = mouth_centers.contiguous().view(-1, 2)[n_frames_G-1:,:]
if eyes_centers is not None:
eyes_centers = eyes_centers.contiguous().view(-1, 2)[n_frames_G-1:,:]
tensor_list = util.reshape([real_B, fake_B, real_A, real_B_prev, fake_B_prev, flow_ref, conf_ref])
# Image and Mouth, Eyes Discriminators
losses = modelD(0, tensor_list, mouth_centers, eyes_centers)
losses = [ torch.mean(x) if x is not None else 0 for x in losses ]
loss_dict = dict(zip(modelD.module.loss_names, losses))
# Dynamics Discriminator
loss_dict_T = []
if t_scales > 0:
real_B_all, real_B_skipped = util.get_skipped_frames(real_B_all, real_B, t_scales, n_frames_D)
fake_B_all, fake_B_skipped = util.get_skipped_frames(fake_B_all, fake_B, t_scales, n_frames_D)
flow_ref_all, conf_ref_all, flow_ref_skipped, conf_ref_skipped = util.get_skipped_flows(flowNet, flow_ref_all, conf_ref_all, real_B_skipped,
flow_ref, conf_ref, t_scales, n_frames_D)
for s in range(t_scales):
if real_B_skipped[s] is not None:
losses = modelD(s+1, [real_B_skipped[s], fake_B_skipped[s], flow_ref_skipped[s], conf_ref_skipped[s]])
losses = [ torch.mean(x) if not isinstance(x, int) else x for x in losses ]
loss_dict_T.append(dict(zip(modelD.module.loss_names_T, losses)))
# Losses
loss_D = (loss_dict['D_fake'] + loss_dict['D_real']) * 0.5
loss_G = loss_dict['G_GAN'] + loss_dict['G_GAN_Feat'] + loss_dict['G_VGG'] + loss_dict['G_Warp']
if not opt.no_mouth_D:
loss_G += loss_dict['Gm_GAN'] + loss_dict['Gm_GAN_Feat']
loss_D += (loss_dict['Dm_fake'] + loss_dict['Dm_real']) * 0.5
if opt.use_eyes_D:
loss_G += loss_dict['Ge_GAN'] + loss_dict['Ge_GAN_Feat']
loss_D += (loss_dict['De_fake'] + loss_dict['De_real']) * 0.5
loss_D_T = []
actual_t_scales = min(t_scales, len(loss_dict_T))
for s in range(actual_t_scales):
loss_G += loss_dict_T[s]['G_T_GAN'] + loss_dict_T[s]['G_T_GAN_Feat']
loss_D_T.append((loss_dict_T[s]['D_T_fake'] + loss_dict_T[s]['D_T_real']) * 0.5)
############### Backward Pass ####################
optimizer_G = modelG.module.optimizer_G
optimizer_D = modelD.module.optimizer_D
optimizer_G.zero_grad()
loss_G.backward()
optimizer_G.step()
optimizer_D.zero_grad()
loss_D.backward()
optimizer_D.step()
for s in range(actual_t_scales):
optimizer_D_T = getattr(modelD.module, 'optimizer_D_T'+str(s))
optimizer_D_T.zero_grad()
loss_D_T[s].backward()
optimizer_D_T.step()
visualizer.vis_print('Video path: ' + A_paths[0])
total_steps += opt.batchSize
epoch_iter += opt.batchSize
############## Display results and errors ##########
### print out errors
if total_steps % opt.print_freq == 0:
t = (time.time() - iter_start_time) / opt.print_freq
errors = {k: v.data.item() if not isinstance(v, int) else v for k, v in loss_dict.items()}
for s in range(len(loss_dict_T)):
errors.update({k+str(s): v.data.item() if not isinstance(v, int) else v for k, v in loss_dict_T[s].items()})
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
visualizer.plot_current_errors(errors, total_steps)
### display output images
if save_fake:
visual_dict = [('input_nmfc_image', util.tensor2im(nmfc_video[0, -1], normalize=False)),
('fake_image', util.tensor2im(fake_B[0, -1])),
('fake_first_image', util.tensor2im(fake_B_first)),
('real_image', util.tensor2im(real_B[0, -1])),
('flow_ref', util.tensor2flow(flow_ref[0, -1])),
('conf_ref', util.tensor2im(conf_ref[0, -1], normalize=False))]
if not opt.no_eye_gaze:
visual_dict += [('input_eye_gaze_image', util.tensor2im(eye_gaze_video[0, -1], normalize=False))]
if not opt.no_mouth_D:
mc = util.fit_ROI_in_frame(mouth_centers[-1], opt)
fake_B_mouth = util.tensor2im(util.crop_ROI(fake_B[0, -1], mc, opt.ROI_size))
visual_dict += [('fake_image_mouth', fake_B_mouth)]
if opt.use_eyes_D:
mc = util.fit_ROI_in_frame(eyes_centers[-1], opt)
fake_B_eyes = util.tensor2im(util.crop_ROI(fake_B[0, -1], mc, opt.ROI_size))
visual_dict += [('fake_image_eyes', fake_B_eyes)]
visuals = OrderedDict(visual_dict)
visualizer.display_current_results(visuals, epoch, total_steps)
### save latest model
if total_steps % opt.save_latest_freq == 0:
visualizer.vis_print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps))
modelG.module.save('latest')
modelD.module.save('latest')
np.savetxt(iter_path, (epoch, epoch_iter), delimiter=',', fmt='%d')
visualizer.vis_print('Saved the latest model (epoch %d, epoch iterations %d)' % (epoch, epoch_iter))
if epoch_iter > dataset_size - opt.batchSize:
epoch_iter = 0
break
# end of epoch
iter_end_time = time.time()
visualizer.vis_print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
### save model for this epoch, as latest
visualizer.vis_print('saving as latest the model at the end of epoch %d, total_steps %d' % (epoch, total_steps))
modelG.module.save('latest')
modelD.module.save('latest')
np.savetxt(iter_path, (epoch+1, 0), delimiter=',', fmt='%d')
visualizer.vis_print('Saved the latest the model at the end of epoch %d, total_steps %d' % (epoch, total_steps))
if epoch % opt.save_epoch_freq == 0:
visualizer.vis_print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps))
modelG.module.save(epoch)
modelD.module.save(epoch)
### linearly decay learning rate after certain iterations
if epoch > opt.niter:
modelG.module.update_learning_rate(epoch)
modelD.module.update_learning_rate(epoch)
### grow training sequence length
data_loader.dataset.update_sequence_length(epoch//opt.niter_step)