-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy patheval_ood.py
40 lines (29 loc) · 1.6 KB
/
eval_ood.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from utils import *
from dataloader import *
from model import create_model
def main():
parser = argparse.ArgumentParser(description='PyTorch Training')
parser.add_argument('--dataset', default="CIFAR100", type=str, help="dataset", choices=["CIFAR10", "CIFAR100", "TinyImageNet"])
parser.add_argument('--num_classes', default=100, type=int, help='num classes')
parser.add_argument('--input_size', default=32, type=int, help='input_size')
parser.add_argument('--patch', default=4, type=int, help='num patch (used by vit)')
parser.add_argument('--device', default="cuda", type=str, help='device')
parser.add_argument('--batch_size', default=1024, type=int, help='batch size')
parser.add_argument('--model', default="ResNet18", type=str, help='model used')
parser.add_argument('--resume', default=None, type=str, help='resume from checkpoint')
args = parser.parse_args()
# create model
model = create_model(args.model, args.input_size, args.num_classes, args.device, args.patch, args.resume)
if args.dataset == "CIFAR10":
corruption_acc_dict = evaluate_cifar_corruption(args, model, data_dir="./data/CIFAR-10-C")
print(corruption_acc_dict)
elif args.dataset == "CIFAR100":
corruption_acc_dict = evaluate_cifar_corruption(args, model, data_dir="./data/CIFAR-100-C")
print(corruption_acc_dict)
elif args.dataset == "TinyImageNet":
corruption_acc_dict = evaluate_tiny_corruption(args, model)
print(corruption_acc_dict)
if __name__ == "__main__":
main()