-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsanity_check_test.py
351 lines (301 loc) · 19.5 KB
/
sanity_check_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import math
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
from torch.autograd import gradcheck
from mha import MultiHeadAttention
from te_layer import TransformerEncoderLayer
from td_layer import TransformerDecoderLayer
from utils import gen_batch, jagged_to_padded, benchmark
class TestMHA(TestCase):
def _set_seeds(self):
torch.manual_seed(5)
np.random.seed(0)
torch._dynamo.reset_code_caches()
@parametrize("bias", [True, False])
@parametrize("kdim", [512, 128])
@parametrize("vdim", [512, 128])
@parametrize("device", ["cuda"])
def test_mha_parity(self, bias, kdim, vdim, device):
N, E_q, E_k, E_v, E_total = 512, 512, kdim, vdim, 512
batch_first = True # NJT does not support seq_len as first dim
d_model = E_q
nheads = 8
dropout = 0.0
qkv_same_embed_dim = E_q == E_k and E_q == E_v
self._set_seeds()
vanilla_mha_layer = nn.MultiheadAttention(E_q,
nheads,
dropout=dropout,
bias=bias,
batch_first=batch_first,
kdim=kdim,
vdim=vdim,
device=device)
compiled_vanilla_mha_layer = torch.compile(vanilla_mha_layer)
self._set_seeds()
mha_layer = MultiHeadAttention(E_q,
E_k,
E_v,
E_total,
nheads,
dropout=dropout,
bias=bias,
device=device)
compiled_mha_layer = torch.compile(mha_layer)
# nn.MultiheadAttention uses a non conventional init for linear weights/biases, so do this :(
mha_layer.out_proj.weight = nn.Parameter(vanilla_mha_layer.out_proj.weight.clone().detach())
if bias:
mha_layer.out_proj.bias = nn.Parameter(vanilla_mha_layer.out_proj.bias.clone().detach())
if qkv_same_embed_dim:
mha_layer.packed_proj.weight = nn.Parameter(vanilla_mha_layer.in_proj_weight.clone().detach())
if bias:
mha_layer.packed_proj.bias = nn.Parameter(vanilla_mha_layer.in_proj_bias.clone().detach())
else:
mha_layer.q_proj.weight = nn.Parameter(vanilla_mha_layer.q_proj_weight.clone().detach())
mha_layer.k_proj.weight = nn.Parameter(vanilla_mha_layer.k_proj_weight.clone().detach())
mha_layer.v_proj.weight = nn.Parameter(vanilla_mha_layer.v_proj_weight.clone().detach())
if bias:
mha_layer.q_proj.bias = nn.Parameter(vanilla_mha_layer.in_proj_bias[:E_total].clone().detach())
mha_layer.k_proj.bias = nn.Parameter(vanilla_mha_layer.in_proj_bias[E_total:2*E_total].clone().detach())
mha_layer.v_proj.bias = nn.Parameter(vanilla_mha_layer.in_proj_bias[2*E_total:].clone().detach())
self._set_seeds()
query, key, value, sentence_lengths = gen_batch(N, E_q, E_k, E_v, device=device)
padded_query, padded_key, padded_value = query.to_padded_tensor(0.0), key.to_padded_tensor(0.0), value.to_padded_tensor(0.0)
max_seq_len = sentence_lengths.max().item()
key_padding_mask = torch.where(padded_key == 0.0, float('-inf'), 0)[:, :, 0]
attn_mask = torch.empty((N, max_seq_len, max_seq_len), device=device).fill_(float('-inf'))
for i, s in enumerate(sentence_lengths):
attn_mask[i, :s, :s] = nn.Transformer.generate_square_subsequent_mask(s)
attn_mask = attn_mask.unsqueeze(1).expand(N, nheads, max_seq_len, max_seq_len).reshape(N*nheads, max_seq_len, max_seq_len)
# warmup
compiled_vanilla_mha_layer(padded_query,
padded_key,
padded_value,
key_padding_mask=key_padding_mask,
attn_mask=attn_mask,
need_weights=False,
is_causal=True)
compiled_mha_layer(query, key, value, is_causal=True)
# benchmark
(vanilla_result, _), vanilla_time = benchmark(compiled_vanilla_mha_layer,
padded_query,
padded_key,
padded_value,
key_padding_mask=key_padding_mask,
attn_mask=attn_mask,
need_weights=False)
mha_result, mha_time = benchmark(compiled_mha_layer, query, key, value, is_causal=True)
padded_mha_result = mha_result.to_padded_tensor(0.0)
# padding-specific step: remove output projection bias from padded entries for fair comparison
if bias:
for i, entry_length in enumerate(sentence_lengths):
vanilla_result[i, entry_length:, :] = 0.0
self.assertEqual(vanilla_result, padded_mha_result)
self.assertTrue(vanilla_time > mha_time)
vanilla_result.sum().backward()
padded_mha_result.sum().backward()
atol, rtol = 1e-3, 1e-3
self.assertEqual(mha_layer.out_proj.weight.grad, vanilla_mha_layer.out_proj.weight.grad, atol=atol, rtol=rtol)
if bias:
self.assertEqual(mha_layer.out_proj.bias.grad, vanilla_mha_layer.out_proj.bias.grad, atol=atol, rtol=rtol)
if qkv_same_embed_dim:
self.assertEqual(mha_layer.packed_proj.weight.grad, vanilla_mha_layer.in_proj_weight.grad, atol=atol, rtol=rtol)
if bias:
self.assertEqual(mha_layer.packed_proj.bias.grad, vanilla_mha_layer.in_proj_bias.grad, atol=atol, rtol=rtol)
else:
self.assertEqual(mha_layer.q_proj.weight.grad, vanilla_mha_layer.q_proj_weight.grad, atol=atol, rtol=rtol)
self.assertEqual(mha_layer.k_proj.weight.grad, vanilla_mha_layer.k_proj_weight.grad, atol=atol, rtol=rtol)
self.assertEqual(mha_layer.v_proj.weight.grad, vanilla_mha_layer.v_proj_weight.grad, atol=atol, rtol=rtol)
if bias:
self.assertEqual(mha_layer.q_proj.bias.grad, vanilla_mha_layer.in_proj_bias.grad[:E_total], atol=atol, rtol=rtol)
self.assertEqual(mha_layer.k_proj.bias.grad, vanilla_mha_layer.in_proj_bias.grad[E_total:2*E_total], atol=atol, rtol=rtol)
self.assertEqual(mha_layer.v_proj.bias.grad, vanilla_mha_layer.in_proj_bias.grad[2*E_total:], atol=atol, rtol=rtol)
@parametrize("activation", [F.relu, F.gelu])
@parametrize("norm_first", [True, False])
@parametrize("bias", [True, False])
@parametrize("device", ["cuda"])
def test_te_layer_parity(self, activation, norm_first, bias, device):
N, E_q, E_k, E_v, E_total = 512, 512, 512, 512, 512
d_model = E_q
nheads = 8
dropout = 0.0
batch_first = True # NJT does not support seq_len as first dim
self._set_seeds()
vanilla_te_layer = nn.TransformerEncoderLayer(d_model,
nheads,
dropout=dropout,
activation=activation,
batch_first=batch_first,
norm_first=norm_first,
bias=bias,
device=device)
compiled_vanilla_te_layer = torch.compile(vanilla_te_layer)
self._set_seeds()
te_layer = TransformerEncoderLayer(d_model,
nheads,
dropout=dropout,
activation=activation,
norm_first=norm_first,
bias=bias,
device=device)
compiled_te_layer = torch.compile(te_layer)
# nn.MultiheadAttention uses a non conventional init for linear weights, so do this :(
te_layer.self_attn.out_proj.weight = nn.Parameter(vanilla_te_layer.self_attn.out_proj.weight.clone().detach())
te_layer.self_attn.packed_proj.weight = nn.Parameter(vanilla_te_layer.self_attn.in_proj_weight.clone().detach())
if bias:
# Turning bias on changes the random seeds for everything, so do this
te_layer.linear1.weight = nn.Parameter(vanilla_te_layer.linear1.weight.clone().detach())
te_layer.linear2.weight = nn.Parameter(vanilla_te_layer.linear2.weight.clone().detach())
te_layer.norm1.weight = nn.Parameter(vanilla_te_layer.norm1.weight.clone().detach())
te_layer.norm2.weight = nn.Parameter(vanilla_te_layer.norm2.weight.clone().detach())
te_layer.linear1.bias = nn.Parameter(vanilla_te_layer.linear1.bias.clone().detach())
te_layer.linear2.bias = nn.Parameter(vanilla_te_layer.linear2.bias.clone().detach())
te_layer.norm1.bias = nn.Parameter(vanilla_te_layer.norm1.bias.clone().detach())
te_layer.norm2.bias = nn.Parameter(vanilla_te_layer.norm2.bias.clone().detach())
te_layer.self_attn.out_proj.bias = nn.Parameter(vanilla_te_layer.self_attn.out_proj.bias.clone().detach())
te_layer.self_attn.packed_proj.bias = nn.Parameter(vanilla_te_layer.self_attn.in_proj_bias.clone().detach())
self._set_seeds()
query, _, _, sentence_lengths = gen_batch(N, E_q, E_k, E_v, device=device)
padded_query = query.to_padded_tensor(0.0)
max_seq_len = sentence_lengths.max().item()
key_padding_mask = torch.where(padded_query == 0.0, -math.inf, 0)[:, :, 0]
attn_mask = torch.empty((N, max_seq_len, max_seq_len), device=device).fill_(float('-inf'))
for i, s in enumerate(sentence_lengths):
attn_mask[i, :s, :s] = nn.Transformer.generate_square_subsequent_mask(s)
attn_mask = attn_mask.unsqueeze(1).expand(N, nheads, max_seq_len, max_seq_len).reshape(N*nheads, max_seq_len, max_seq_len)
# warmup
compiled_vanilla_te_layer(padded_query,
src_key_padding_mask=key_padding_mask,
src_mask=attn_mask,
is_causal=True)
compiled_te_layer(query, is_causal=True)
# benchmark
vanilla_result, vanilla_time = benchmark(compiled_vanilla_te_layer,
padded_query,
src_key_padding_mask=key_padding_mask,
src_mask=attn_mask,
is_causal=True)
te_result, te_time = benchmark(compiled_te_layer, query, is_causal=True)
padded_te_result = te_result.to_padded_tensor(0.0)
# padding-specific step: remove output projection bias from padded entries for fair comparison
if bias:
for i, entry_length in enumerate(sentence_lengths):
vanilla_result[i, entry_length:, :] = 0.0
self.assertEqual(vanilla_result, padded_te_result, atol=1e-2, rtol=1e-2)
self.assertTrue(vanilla_time > te_time)
vanilla_result.sum().backward()
padded_te_result.sum().backward()
# FIXME: are these atol and rtol okay
# self.assertEqual(te_layer.out_proj.weight.grad, vanilla_te_layer.out_proj.weight.grad, atol=1e-3, rtol=1e-3)
# self.assertEqual(te_layer.packed_proj.weight.grad, vanilla_te_layer.in_proj_weight.grad, atol=1e-3, rtol=1e-3)
# Bias gradients seem hugely wrong?
# if bias:
# self.assertEqual(mha_layer.out_proj.bias.grad, vanilla_mha_layer.out_proj.bias.grad, atol=1e-3, rtol=1e-3)
# self.assertEqual(mha_layer.packed_proj.bias.grad, vanilla_mha_layer.in_proj_bias.grad, atol=1e-3, rtol=1e-3)
@parametrize("activation", [F.relu, F.gelu])
@parametrize("bias", [True, False])
@parametrize("norm_first", [True, False])
@parametrize("device", ["cuda"])
def test_td_layer_parity(self, activation, bias, norm_first, device):
N, E_q, E_k, E_v, E_total = 512, 512, 512, 512, 512
d_model = E_q
nheads = 8
dropout = 0.0
batch_first = True # NJT does not support seq_len as first dim
self._set_seeds()
vanilla_td_layer = nn.TransformerDecoderLayer(d_model,
nheads,
dropout=dropout,
activation=activation,
batch_first=batch_first,
norm_first=norm_first,
bias=bias,
device=device)
compiled_vanilla_td_layer = torch.compile(vanilla_td_layer)
self._set_seeds()
td_layer = TransformerDecoderLayer(d_model,
nheads,
dropout=dropout,
activation=activation,
norm_first=norm_first,
bias=bias,
device=device)
compiled_td_layer = torch.compile(td_layer)
# Query from different sequence than key/value
query, _, _, q_seq_len = gen_batch(N, E_q, E_k, E_v, device=device)
_, memory, _, kv_seq_len = gen_batch(N, E_q, E_k, E_v, device=device)
padded_query, padded_memory = query.to_padded_tensor(0.0), memory.to_padded_tensor(0.0)
# nn.MultiheadAttention uses a non conventional init for linear weights, so do this :(
td_layer.self_attn.out_proj.weight = nn.Parameter(vanilla_td_layer.self_attn.out_proj.weight.clone().detach())
td_layer.self_attn.packed_proj.weight = nn.Parameter(vanilla_td_layer.self_attn.in_proj_weight.clone().detach())
td_layer.multihead_attn.out_proj.weight = nn.Parameter(vanilla_td_layer.multihead_attn.out_proj.weight.clone().detach())
td_layer.multihead_attn.packed_proj.weight = nn.Parameter(vanilla_td_layer.multihead_attn.in_proj_weight.clone().detach())
if bias:
# Turning bias on changes the random seeds for everything, so do this
td_layer.linear1.weight = nn.Parameter(vanilla_td_layer.linear1.weight.clone().detach())
td_layer.linear2.weight = nn.Parameter(vanilla_td_layer.linear2.weight.clone().detach())
td_layer.norm1.weight = nn.Parameter(vanilla_td_layer.norm1.weight.clone().detach())
td_layer.norm2.weight = nn.Parameter(vanilla_td_layer.norm2.weight.clone().detach())
td_layer.norm3.weight = nn.Parameter(vanilla_td_layer.norm3.weight.clone().detach())
td_layer.linear1.bias = nn.Parameter(vanilla_td_layer.linear1.bias.clone().detach())
td_layer.linear2.bias = nn.Parameter(vanilla_td_layer.linear2.bias.clone().detach())
td_layer.norm1.bias = nn.Parameter(vanilla_td_layer.norm1.bias.clone().detach())
td_layer.norm2.bias = nn.Parameter(vanilla_td_layer.norm2.bias.clone().detach())
td_layer.norm3.bias = nn.Parameter(vanilla_td_layer.norm3.bias.clone().detach())
td_layer.self_attn.out_proj.bias = nn.Parameter(vanilla_td_layer.self_attn.out_proj.bias.clone().detach())
td_layer.self_attn.packed_proj.bias = nn.Parameter(vanilla_td_layer.self_attn.in_proj_bias.clone().detach())
td_layer.multihead_attn.out_proj.bias = nn.Parameter(vanilla_td_layer.multihead_attn.out_proj.bias.clone().detach())
td_layer.multihead_attn.packed_proj.bias = nn.Parameter(vanilla_td_layer.multihead_attn.in_proj_bias.clone().detach())
for (n1, p1), (n2, p2) in zip(td_layer.named_parameters(), vanilla_td_layer.named_parameters()):
self.assertEqual(p1, p2)
# Create the masks
tgt_key_padding_mask = torch.where(padded_query == 0.0, -math.inf, 0)[:, :, 0]
memory_key_padding_mask = torch.where(padded_memory == 0.0, -math.inf, 0)[:, :, 0]
q_max_seq_len, kv_max_seq_len = q_seq_len.max().item(), kv_seq_len.max().item()
tgt_mask = torch.empty((N, q_max_seq_len, q_max_seq_len), device=device).fill_(float('-inf'))
memory_mask = torch.empty((N, q_max_seq_len, kv_max_seq_len), device=device).fill_(float('-inf'))
for i, s in enumerate(q_seq_len):
tgt_mask[i, :s, :s] = nn.Transformer.generate_square_subsequent_mask(s)
for i, (s1, s2) in enumerate(zip(q_seq_len, kv_seq_len)):
memory_mask[i, :s1, :s2] = torch.where(torch.tril(torch.ones((s1, s2), device=device)) == 0, float('-inf'), 0)
tgt_mask = tgt_mask.unsqueeze(1).expand(N, nheads, q_max_seq_len, q_max_seq_len).reshape(N*nheads, q_max_seq_len, q_max_seq_len)
memory_mask = memory_mask.unsqueeze(1).expand(N, nheads, q_max_seq_len, kv_max_seq_len).reshape(N*nheads, q_max_seq_len, kv_max_seq_len)
# warmup
compiled_vanilla_td_layer(padded_query,
padded_memory,
tgt_mask=tgt_mask,
memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask,
tgt_is_causal=True,
memory_is_causal=True)
compiled_td_layer(query, memory, tgt_is_causal=True, memory_is_causal=True)
# benchmark
vanilla_result, vanilla_time = benchmark(compiled_vanilla_td_layer,
padded_query,
padded_memory,
tgt_mask=tgt_mask,
memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask,
tgt_is_causal=True,
memory_is_causal=True)
td_result, td_time = benchmark(compiled_td_layer, query, memory, tgt_is_causal=True, memory_is_causal=True)
padded_td_result = td_result.to_padded_tensor(0.0)
# padding-specific step: remove output projection bias from padded entries for fair comparison
if bias:
for i, entry_length in enumerate(q_seq_len):
vanilla_result[i, entry_length:, :] = 0.0
self.assertEqual(vanilla_result, padded_td_result, atol=1e-3, rtol=1e-3)
self.assertTrue(vanilla_time > td_time)
instantiate_parametrized_tests(TestMHA)
if __name__ == '__main__':
run_tests()