-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmolecular.agda
382 lines (284 loc) · 16.6 KB
/
molecular.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
open import Data.Sum
open import Relation.Binary.Core
open import Relation.Binary.PropositionalEquality.Core
open import Relation.Binary.PropositionalEquality
-- a directed graph to start with
postulate G₀ : Set
postulate G : G₀ → G₀ → Set
-- types
data ty : Set where
base : G₀ → ty
O : ty
_+_ : ty → ty → ty
infix 30 _+_
-- canonical/molecular/atomic terms
data _↓_ : ty → ty → Set -- atomic
data _↕_ : ty → ty → Set -- molecular
data _↑_ : ty → ty → Set -- canonical
data _↓_ where
var : (A : ty) → (A ↓ A)
data _↕_ where
↓↕ : {A : ty} {B : G₀} → (A ↓ base B) → (A ↕ base B)
ar : {X : ty} {A B : G₀} (f : G A B) → (X ↕ base A) → (X ↕ base B)
inl : {X A B : ty} → (X ↕ A) → (X ↕ A + B)
inr : {X A B : ty} → (X ↕ B) → (X ↕ A + B)
data _↑_ where
↕↑ : {A B : ty} → (A ↕ B) → (A ↑ B)
abort : {X C : ty} → (X ↓ O) → (X ↑ C)
case : {X A B C : ty} → (X ↓ A + B) → (A ↑ C) → (B ↑ C) → (X ↑ C)
-- Unrestricted versions are admissible (excluding case for now)
ar' : {X : ty} {A B : G₀} (f : G A B) → (X ↑ base A) → (X ↑ base B)
ar' f (↕↑ M) = ↕↑ (ar f M)
ar' f (abort M) = abort M
ar' f (case x M₁ M₂) = case x (ar' f M₁) (ar' f M₂)
inl' : {X A B : ty} → (X ↑ A) → (X ↑ A + B)
inl' (↕↑ M) = ↕↑ (inl M)
inl' (abort M) = abort M
inl' (case x M₁ M₂) = case x (inl' M₁) (inl' M₂)
inr' : {X A B : ty} → (X ↑ B) → (X ↑ A + B)
inr' (↕↑ M) = ↕↑ (inr M)
inr' (abort M) = abort M
inr' (case x M₁ M₂) = case x (inr' M₁) (inr' M₂)
abort' : {X C : ty} → (X ↑ O) → (X ↑ C)
abort' (↕↑ ())
abort' (abort M) = abort M
abort' (case x M₁ M₂) = case x (abort' M₁) (abort' M₂)
-- Hereditary substitution (together with admissible unrestricted case)
_↓⟦_⟧ : {A B C : ty} → (B ↓ C) → (A ↑ B) → (A ↑ C)
var A ↓⟦ M ⟧ = M
_↕⟦_⟧ : {A B C : ty} → (B ↕ C) → (A ↑ B) → (A ↑ C)
↓↕ N ↕⟦ M ⟧ = N ↓⟦ M ⟧
ar f N ↕⟦ M ⟧ = ar' f (N ↕⟦ M ⟧)
inl N ↕⟦ M ⟧ = inl' (N ↕⟦ M ⟧)
inr N ↕⟦ M ⟧ = inr' (N ↕⟦ M ⟧)
_↑⟦_⟧ : {A B C : ty} → (B ↑ C) → (A ↑ B) → (A ↑ C)
case' : {X A B C : ty} → (X ↑ A + B) → (A ↑ C) → (B ↑ C) → (X ↑ C)
↕↑ N ↑⟦ M ⟧ = N ↕⟦ M ⟧
abort N ↑⟦ M ⟧ = abort' (N ↓⟦ M ⟧)
case x N₁ N₂ ↑⟦ M ⟧ = case' (x ↓⟦ M ⟧) N₁ N₂
case' (↕↑ (inl M)) P Q = P ↑⟦ ↕↑ M ⟧
case' (↕↑ (inr M)) P Q = Q ↑⟦ ↕↑ M ⟧
case' (abort M) P Q = abort M
case' (case x M₁ M₂) P Q = case x (case' M₁ P Q) (case' M₂ P Q)
-- identites
hid : (A : ty) → (A ↑ A)
hid (base A) = ↕↑ (↓↕ (var (base A)))
hid O = abort (var O)
hid (A + B) = case (var (A + B)) (inl' (hid A)) (inr' (hid B))
-- ar' commutes with substitution
ar-abort : ∀ {X} {C D : G₀} (f : G C D) (M : X ↑ O) → abort' M ≡ ar' f (abort' M)
ar-abort f (↕↑ ())
ar-abort f (abort x) = refl
ar-abort f (case x M₁ M₂) = cong₂ (case x) (ar-abort f M₁) (ar-abort f M₂)
ar-case : ∀ {X A B} {C D : G₀} (f : G C D) (M : X ↑ A + B) (P : A ↑ base C) (Q : B ↑ base C)
→ case' M (ar' f P) (ar' f Q) ≡ ar' f (case' M P Q)
ar↑ : {X A : ty} {B C : G₀} (f : G B C) (N : A ↑ base B) (M : X ↑ A) → ar' f N ↑⟦ M ⟧ ≡ ar' f (N ↑⟦ M ⟧)
ar-case f (↕↑ (inl x)) P Q = ar↑ f P (↕↑ x)
ar-case f (↕↑ (inr x)) P Q = ar↑ f Q (↕↑ x)
ar-case f (abort x) P Q = refl
ar-case f (case x M₁ M₂) P Q = cong₂ (case x) (ar-case f M₁ P Q) (ar-case f M₂ P Q)
ar↑ f (↕↑ x) M = refl
ar↑ f (abort x) M = ar-abort f (x ↓⟦ M ⟧)
ar↑ f (case x N₁ N₂) M = ar-case f (x ↓⟦ M ⟧) N₁ N₂
ar↕ : {X Y : ty} {A B : G₀} (f : G A B) (N : Y ↕ base A) (M : X ↑ Y) → (ar' f (↕↑ N)) ↑⟦ M ⟧ ≡ ar' f (N ↕⟦ M ⟧)
ar↕ f (↓↕ (var ._)) M = refl
ar↕ f (ar g N) M = refl
-- inl' commutes with substitution
inl-abort : ∀ {X A B} (w : X ↑ O) → abort' w ≡ inl' {A = A} {B = B} (abort' w)
inl-abort (↕↑ ())
inl-abort (abort x) = refl
inl-abort (case x M₁ M₂) = cong₂ (case x) (inl-abort M₁) (inl-abort M₂)
inl-case : ∀ {X A B C D} (M : X ↑ A + B) (P : A ↑ C) (Q : B ↑ C)
→ case' M (inl' {B = D} P) (inl' {B = D} Q) ≡ inl' {B = D} (case' M P Q)
inl↑ : {X A B C : ty} (N : A ↑ B) (M : X ↑ A) → inl' N ↑⟦ M ⟧ ≡ inl' {B = C} (N ↑⟦ M ⟧)
inl-case (↕↑ (inl x)) P Q = inl↑ P (↕↑ x)
inl-case (↕↑ (inr x)) P Q = inl↑ Q (↕↑ x)
inl-case (abort x) P Q = refl
inl-case (case x M₁ M₂) P Q = cong₂ (case x) (inl-case M₁ P Q) (inl-case M₂ P Q)
inl↑ (↕↑ x) M = refl
inl↑ (abort x) M = inl-abort (x ↓⟦ M ⟧)
inl↑ (case x N₁ N₂) M = inl-case (x ↓⟦ M ⟧) N₁ N₂
inl↕ : {X Y A B : ty} (N : Y ↕ A) (M : X ↑ Y) → (inl' {B = B} (↕↑ N)) ↑⟦ M ⟧ ≡ inl' {B = B} (N ↕⟦ M ⟧)
inl↕ (↓↕ x) M = refl
inl↕ (ar f N) M = refl
inl↕ (inl N) M = refl
inl↕ (inr N) M = refl
-- inr' commutes with substitution
inr-abort : ∀ {X A B} (w : X ↑ O) → abort' w ≡ inr' {A = A} {B = B} (abort' w)
inr-abort (↕↑ ())
inr-abort (abort x) = refl
inr-abort (case x M₁ M₂) = cong₂ (case x) (inr-abort M₁) (inr-abort M₂)
inr-case : ∀ {X A B C D} (M : X ↑ A + B) (P : A ↑ C) (Q : B ↑ C)
→ case' M (inr' {A = D} P) (inr' {A = D} Q) ≡ inr' {A = D} (case' M P Q)
inr↑ : {X A B C : ty} (N : A ↑ B) (M : X ↑ A) → inr' N ↑⟦ M ⟧ ≡ inr' {A = C} (N ↑⟦ M ⟧)
inr-case (↕↑ (inl x)) P Q = inr↑ P (↕↑ x)
inr-case (↕↑ (inr x)) P Q = inr↑ Q (↕↑ x)
inr-case (abort x) P Q = refl
inr-case (case x M₁ M₂) P Q = cong₂ (case x) (inr-case M₁ P Q) (inr-case M₂ P Q)
inr↑ (↕↑ x) M = refl
inr↑ (abort x) M = inr-abort (x ↓⟦ M ⟧)
inr↑ (case x N₁ N₂) M = inr-case (x ↓⟦ M ⟧) N₁ N₂
inr↕ : {X Y A B : ty} (N : Y ↕ B) (M : X ↑ Y) → (inr' {A = A} (↕↑ N)) ↑⟦ M ⟧ ≡ inr' {A = A} (N ↕⟦ M ⟧)
inr↕ (↓↕ x) M = refl
inr↕ (ar f N) M = refl
inr↕ (inl N) M = refl
inr↕ (inr N) M = refl
-- abort' commutes with substitution
abort-abort : ∀ {A C} (w : A ↑ O) → abort' {C = C} w ≡ abort' (abort' w)
abort-abort (↕↑ ())
abort-abort (abort x) = refl
abort-abort (case x M₁ M₂) = cong₂ (case x) (abort-abort M₁) (abort-abort M₂)
abort-case : ∀ {A C A₁ B₁} (w : A ↑ A₁ + B₁) (N₁ : A₁ ↑ O) (N₂ : B₁ ↑ O)
→ case' w (abort' N₁) (abort' N₂) ≡ abort' {C = C} (case' w N₁ N₂)
abort↑ : {A B C : ty} (N : B ↑ O) (M : A ↑ B) → (abort' N) ↑⟦ M ⟧ ≡ abort' {C = C} (N ↑⟦ M ⟧)
abort-case (↕↑ (inl x)) P Q = abort↑ P (↕↑ x)
abort-case (↕↑ (inr x)) P Q = abort↑ Q (↕↑ x)
abort-case (abort x) P Q = refl
abort-case (case x M₁ M₂) P Q = cong₂ (case x) (abort-case M₁ P Q) (abort-case M₂ P Q)
abort↑ (↕↑ ()) M
abort↑ (abort x) M = abort-abort (x ↓⟦ M ⟧)
abort↑ (case x N₁ N₂) M = abort-case (x ↓⟦ M ⟧) N₁ N₂
-- some commuting conversions
κ↕-abort : {X C D : ty} (M : X ↓ O) (P : C ↕ D) → abort M ≡ P ↕⟦ abort M ⟧
κ↕-abort M (↓↕ (var ._)) = refl
κ↕-abort M (ar f P) = cong (ar' f) (κ↕-abort M P)
κ↕-abort M (inl P) = cong inl' (κ↕-abort M P)
κ↕-abort M (inr P) = cong inr' (κ↕-abort M P)
κ↑-abort : {X C D : ty} (M : X ↓ O) (P : C ↑ D) → abort M ≡ P ↑⟦ abort M ⟧
κ↑-abort M (↕↑ P) = κ↕-abort M P
κ↑-abort M (abort (var .O)) = refl
κ↑-abort M (case (var ._) P P₁) = refl
κ↕-case : {X A B C D : ty} (M : X ↓ A + B) (P : A ↑ C) (Q : B ↑ C) (R : C ↕ D)
→ case M (R ↕⟦ P ⟧) (R ↕⟦ Q ⟧) ≡ R ↕⟦ case M P Q ⟧
κ↕-case M P Q (↓↕ (var ._)) = refl
κ↕-case M P Q (ar f R) = cong (ar' f) (κ↕-case M P Q R)
κ↕-case M P Q (inl R) = cong inl' (κ↕-case M P Q R)
κ↕-case M P Q (inr R) = cong inr' (κ↕-case M P Q R)
κ↑-case : {X A B C D : ty} (M : X ↓ A + B) (P : A ↑ C) (Q : B ↑ C) (R : C ↑ D)
→ case M (R ↑⟦ P ⟧) (R ↑⟦ Q ⟧) ≡ R ↑⟦ case M P Q ⟧
κ↑-case M P Q (↕↑ R) = κ↕-case M P Q R
κ↑-case M P Q (abort (var .O)) = refl
κ↑-case M P Q (case (var ._) R R₁) = refl
κ↕-abort' : {X C D : ty} (M : X ↑ O) (P : C ↕ D) → abort' M ≡ P ↕⟦ abort' M ⟧
κ↕-abort' (↕↑ ()) P
κ↕-abort' (abort x) P = κ↕-abort x P
κ↕-abort' (case x M₁ M₂) P = trans (cong₂ (case x) (κ↕-abort' M₁ P) (κ↕-abort' M₂ P)) (κ↕-case x (abort' M₁) (abort' M₂) P)
κ↑-abort' : {X C D : ty} (M : X ↑ O) (P : C ↑ D) → abort' M ≡ P ↑⟦ abort' M ⟧
κ↑-abort' (↕↑ ()) P
κ↑-abort' (abort x) P = κ↑-abort x P
κ↑-abort' (case x M₁ M₂) P = trans (cong₂ (case x) (κ↑-abort' M₁ P) (κ↑-abort' M₂ P)) (κ↑-case x (abort' M₁) (abort' M₂) P)
-- β-reductions
β-inl : {X A B C : ty} (M : X ↑ A) (P : A ↑ C) (Q : B ↑ C) → case' (inl' M) P Q ≡ P ↑⟦ M ⟧
β-inl (↕↑ x) P Q = refl
β-inl (abort x) P Q = κ↑-abort x P
β-inl (case x M₁ M₂) P Q = trans (cong₂ (case x) (β-inl M₁ P Q) (β-inl M₂ P Q)) (κ↑-case x M₁ M₂ P)
β-inr : {X A B C : ty} (M : X ↑ B) (P : A ↑ C) (Q : B ↑ C) → case' (inr' M) P Q ≡ Q ↑⟦ M ⟧
β-inr (↕↑ x) P Q = refl
β-inr (abort x) P Q = κ↑-abort x Q
β-inr (case x M₁ M₂) P Q = trans (cong₂ (case x) (β-inr M₁ P Q) (β-inr M₂ P Q)) (κ↑-case x M₁ M₂ Q)
-- unitality
hid↕ : {A B : ty} (M : A ↕ B) → M ↕⟦ hid A ⟧ ≡ ↕↑ M
hid↕ (↓↕ (var ._)) = refl
hid↕ (ar f M) = cong (ar' f) (hid↕ M)
hid↕ (inl M) = cong inl' (hid↕ M)
hid↕ (inr M) = cong inr' (hid↕ M)
hid↑ : {A B : ty} (M : A ↑ B) → M ↑⟦ hid A ⟧ ≡ M
hid↑ (↕↑ M) = hid↕ M
hid↑ (abort (var .O)) = refl
hid↑ (case (var ._) M₁ M₂) = cong₂ (case _) (trans (β-inl (hid _) M₁ M₂) (hid↑ M₁)) (trans (β-inr (hid _) M₁ M₂) (hid↑ M₂))
↑hid : {A B : ty} (M : A ↑ B) → hid B ↑⟦ M ⟧ ≡ M
inl-hid : {X A B : ty} (M : X ↑ A) → inl' {B = B} (hid A) ↑⟦ M ⟧ ≡ inl' M -- not mutual, just auxiliary
inr-hid : {X A B : ty} (M : X ↑ B) → inr' {A = A} (hid B) ↑⟦ M ⟧ ≡ inr' M -- not mutual, just auxiliary
↑hid {B = base x} M = refl
↑hid {B = O} (↕↑ ())
↑hid {B = O} (abort x) = refl
↑hid {B = O} (case x M₁ M₂) = cong₂ (case x) (↑hid M₁) (↑hid M₂)
↑hid {B = B₁ + B₂} (↕↑ (inl x)) = inl-hid (↕↑ x)
↑hid {B = B₁ + B₂} (↕↑ (inr x)) = inr-hid (↕↑ x)
↑hid {B = B₁ + B₂} (abort x) = refl
↑hid {B = B₁ + B₂} (case x M₁ M₂) = cong₂ (case x) (↑hid M₁) (↑hid M₂)
inl-hid {X} {A} {B} M = trans (inl↑ (hid A) M) (cong inl' (↑hid M))
inr-hid {X} {A} {B} M = trans (inr↑ (hid B) M) (cong inr' (↑hid M))
-- case' commutes with substitution
-- AND
-- the last commuting conversion
-- AND
-- assocativity of substitution
case-abort : ∀ {Y A B C} (w : Y ↑ O) (P : A ↑ C) (Q : B ↑ C) →
abort' w ≡ case' (abort' w) P Q
case-case : ∀ {Y A B C A₁ B₁} (w : Y ↑ A₁ + B₁) (N₁ : A₁ ↑ A + B)
(N₂ : B₁ ↑ A + B) (P : A ↑ C) (Q : B ↑ C) →
case' w (case' N₁ P Q) (case' N₂ P Q) ≡ case' (case' w N₁ N₂) P Q
case↑ : {X Y A B C : ty} (N : X ↑ A + B) (M : Y ↑ X) (P : A ↑ C) (Q : B ↑ C)
→ case' N P Q ↑⟦ M ⟧ ≡ case' (N ↑⟦ M ⟧) P Q
κ↕-case' : {X A B C D : ty} (M : X ↑ A + B) (P : A ↑ C) (Q : B ↑ C) (R : C ↕ D)
→ case' M (R ↕⟦ P ⟧) (R ↕⟦ Q ⟧) ≡ R ↕⟦ case' M P Q ⟧
κ↑-case' : {X A B C D : ty} (M : X ↑ A + B) (P : A ↑ C) (Q : B ↑ C) (R : C ↑ D)
→ case' M (R ↑⟦ P ⟧) (R ↑⟦ Q ⟧) ≡ R ↑⟦ case' M P Q ⟧
assoc↕↑ : {A B C D : ty} (P : C ↕ D) (N : B ↑ C) (M : A ↑ B)
→ (P ↕⟦ N ⟧) ↑⟦ M ⟧ ≡ P ↕⟦ (N ↑⟦ M ⟧) ⟧
assoc↑↑ : {A B C D : ty} (P : C ↑ D) (N : B ↑ C) (M : A ↑ B)
→ (P ↑⟦ N ⟧) ↑⟦ M ⟧ ≡ P ↑⟦ (N ↑⟦ M ⟧) ⟧
case-abort (↕↑ ()) P Q
case-abort (abort x) P Q = refl
case-abort (case x M₁ M₂) P Q = cong₂ (case x) (case-abort M₁ P Q) (case-abort M₂ P Q)
case-case (↕↑ (inl x)) N₁ N₂ P Q = case↑ N₁ (↕↑ x) P Q
case-case (↕↑ (inr x)) N₁ N₂ P Q = case↑ N₂ (↕↑ x) P Q
case-case (abort x) N₁ N₂ P Q = refl
case-case (case x M₁ M₂) N₁ N₂ P Q = cong₂ (case x) (case-case M₁ N₁ N₂ P Q) (case-case M₂ N₁ N₂ P Q)
case↑ (↕↑ (inl x)) M P Q = trans (assoc↑↑ P (↕↑ x) M) (sym (β-inl (x ↕⟦ M ⟧) P Q))
case↑ (↕↑ (inr x)) M P Q = trans (assoc↑↑ Q (↕↑ x) M) (sym (β-inr (x ↕⟦ M ⟧) P Q))
case↑ (abort x) M P Q = case-abort (x ↓⟦ M ⟧) P Q
case↑ (case x N₁ N₂) M P Q = case-case (x ↓⟦ M ⟧) N₁ N₂ P Q
κ↕-case' (↕↑ (inl x)) P Q R = assoc↕↑ R P (↕↑ x)
κ↕-case' (↕↑ (inr x)) P Q R = assoc↕↑ R Q (↕↑ x)
κ↕-case' (abort x) P Q R = κ↕-abort x R
κ↕-case' (case x M₁ M₂) P Q R = trans (cong₂ (case x) (κ↕-case' M₁ P Q R) (κ↕-case' M₂ P Q R)) (κ↕-case x (case' M₁ P Q) (case' M₂ P Q) R)
κ↑-case' (↕↑ (inl x)) P Q R = assoc↑↑ R P (↕↑ x)
κ↑-case' (↕↑ (inr x)) P Q R = assoc↑↑ R Q (↕↑ x)
κ↑-case' (abort x) P Q R = κ↑-abort x R
κ↑-case' (case x M₁ M₂) P Q R = trans (cong₂ (case x) (κ↑-case' M₁ P Q R) (κ↑-case' M₂ P Q R)) (κ↑-case x (case' M₁ P Q) (case' M₂ P Q) R)
assoc↕↑ (↓↕ (var ._)) N M = refl
assoc↕↑ (ar f P) N M = trans (trans (ar↑ f (P ↕⟦ N ⟧) M) (cong (ar' f) (assoc↕↑ P N M))) (ar↕ f P (N ↑⟦ M ⟧))
assoc↕↑ (inl P) N M = trans (trans (inl↑ (P ↕⟦ N ⟧) M) (cong inl' (assoc↕↑ P N M))) (inl↕ P (N ↑⟦ M ⟧))
assoc↕↑ (inr P) N M = trans (trans (inr↑ (P ↕⟦ N ⟧) M) (cong inr' (assoc↕↑ P N M))) (inr↕ P (N ↑⟦ M ⟧))
assoc↑↑ (↕↑ P) N M = assoc↕↑ P N M
assoc↑↑ (abort (var .O)) N M = abort↑ N M
assoc↑↑ (case (var ._) P₁ P₂) N M = case↑ N M P₁ P₂
-- weak eta
wη-abort : {X : ty} (M : X ↑ O) → M ≡ abort' M
wη-abort (↕↑ ())
wη-abort (abort x) = refl
wη-abort (case x M₁ M₂) = cong₂ (case x) (wη-abort M₁) (wη-abort M₂)
wη-case : {X A B : ty} (M : X ↑ A + B) → M ≡ case' M (inl' (hid A)) (inr' (hid B))
wη-case (↕↑ (inl x)) = sym (trans (inl↑ (hid _) (↕↑ x)) (cong inl' (↑hid (↕↑ x))))
wη-case (↕↑ (inr x)) = sym (trans (inr↑ (hid _) (↕↑ x)) (cong inr' (↑hid (↕↑ x))))
wη-case (abort x) = refl
wη-case (case x M₁ M₂) = cong₂ (case x) (wη-case M₁) (wη-case M₂)
-- strong eta-expansions
η-abort : {X C : ty} (M : X ↑ O) (P : O ↑ C) → P ↑⟦ M ⟧ ≡ abort' M
η-abort (↕↑ ()) P
η-abort (abort M) P = sym (κ↑-abort M P)
η-abort (case x M₁ M₂) P = trans (sym (κ↑-case x M₁ M₂ P)) (cong₂ (case x) (η-abort M₁ P) (η-abort M₂ P))
η-case : {X A B C : ty} (M : X ↑ A + B) (P : A + B ↑ C)
→ P ↑⟦ M ⟧ ≡ case' M (P ↑⟦ inl' (hid A) ⟧) (P ↑⟦ inr' (hid B) ⟧)
η-case (↕↑ (inl x)) P = trans (cong (λ y → P ↑⟦ y ⟧) (sym (inl-hid (↕↑ x)))) (sym (assoc↑↑ P (inl' (hid _)) (↕↑ x)))
η-case (↕↑ (inr x)) P = trans (cong (λ y → P ↑⟦ y ⟧) (sym (inr-hid (↕↑ x)))) (sym (assoc↑↑ P (inr' (hid _)) (↕↑ x)))
η-case (abort M) P = sym (κ↑-abort M P)
η-case (case x M₁ M₂) P = trans (sym (κ↑-case x M₁ M₂ P)) (cong₂ (case x) (η-case M₁ P) (η-case M₂ P))
-- Universal properties
β-inl-ump : {A B C : ty} (P : A ↑ C) (Q : B ↑ C) → case' (hid (A + B)) P Q ↑⟦ inl' (hid A) ⟧ ≡ P
β-inl-ump {A} {B} P Q = trans (case↑ (hid (A + B)) (inl' (hid A)) P Q)
(trans (cong (λ y → case' y P Q) (↑hid (inl' (hid A))))
(trans (β-inl (hid A) P Q)
(hid↑ P)))
β-inr-ump : {A B C : ty} (P : A ↑ C) (Q : B ↑ C) → case' (hid (A + B)) P Q ↑⟦ inr' (hid B) ⟧ ≡ Q
β-inr-ump {A} {B} P Q = trans (case↑ (hid (A + B)) (inr' (hid B)) P Q)
(trans (cong (λ y → case' y P Q) (↑hid (inr' (hid B))))
(trans (β-inr (hid B) P Q)
(hid↑ Q)))
η-abort-ump : {C : ty} (P : O ↑ C) → P ≡ abort' (hid O)
η-abort-ump P = trans (sym (hid↑ P)) (η-abort (hid O) P)
η-case-ump : {A B C : ty} (P : A + B ↑ C)
→ P ≡ case' (hid (A + B)) (P ↑⟦ inl' (hid A) ⟧) (P ↑⟦ inr' (hid B) ⟧)
η-case-ump {A} {B} {C} P = trans (sym (hid↑ P)) (η-case (hid (A + B)) P)