-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTimeSeriesForecasting.m
171 lines (140 loc) · 4.23 KB
/
TimeSeriesForecasting.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
%%%%%%% Time Series Forecasting Using Deep Learning %%%%
%%%%%%% MATLAB 2022 b %%%%%%% Milad Moradi %%%%%%%%%%%%%%
clc
clear
close all
%% Step1: load Data
% number of numObservations= 1000 Sequnce in 3 channel
% Categaries: Sin, Square, Triangle, Sawtooth
load WaveformData
numChannels = size(data{1},1);
figure
tiledlayout(2,2) % similar to ((subPlot))
for i = 4:7
nexttile
% for plot of several variables with common x-axis
stackedplot(data{i}','LineWidth',2,'DisplayLabels',"channel "+ (1:numChannels) )
xlabel('Time Step')
end
% 0.9 Data for Train , 0.1 Data for Test
numObservations = numel(data);
idxTrain = 1:floor(0.9*numObservations);
idxTest = floor(0.9*numObservations)+1:numObservations;
dataTrain = data(idxTrain);
dataTest = data(idxTest);
% or
cvp = cvpartition(numel(data),'Holdout',0.1);
dataTrain = data(training(cvp),:);
dataTest = data(test(cvp),:);
%% Step2: Prepare Data for Training
numTrain=numel(dataTrain);
XTrain=cell(1,numTrain);
TTrain=cell(1,numTrain); % TTrain=Target Train
for n = 1:numTrain
X = dataTrain{n};
XTrain{n} = X(:,1:end-1);
TTrain{n} = X(:,2:end);
end
% mean and unit variance
muX = mean(cat(2,XTrain{:}),2);
sigmaX = std(cat(2,XTrain{:}),0,2);
muT = mean(cat(2,TTrain{:}),2);
sigmaT = std(cat(2,TTrain{:}),0,2);
for n = 1:numel(XTrain)
XTrain{n} = (XTrain{n} - muX) ./ sigmaX;
TTrain{n} = (TTrain{n} - muT) ./ sigmaT;
end
%% Step3: Define LSTM Network Architecture
layers = [
sequenceInputLayer(numChannels)
lstmLayer(128)
fullyConnectedLayer(numChannels)
regressionLayer];
% Training Options
options = trainingOptions("adam", ...
MaxEpochs=200, ...
SequencePaddingDirection="left", ...
Shuffle="every-epoch", ...
Plots="training-progress", ...
Verbose=0);
%% Step4: Train Neural Network
net = trainNetwork(XTrain,TTrain,layers,options);
%% Step5: Test Network
% Prepare TestData and normalize for Testing
numTest=numel(dataTest);
XTest=cell(1,numTest);
TTest=cell(1,numTest); % TTest=Target Test
for n = 1:numTest
X = dataTest{n};
XTest{n} = (X(:,1:end-1) - muX) ./ sigmaX;
TTest{n} = (X(:,2:end) - muT) ./ sigmaT;
end
YTest = predict(net,XTest,SequencePaddingDirection="left");
rmse=zeros(1,numTest);
for i = 1:size(YTest,1)
rmse(i) = sqrt(mean((YTest{i} - TTest{i}).^2,"all"));
end
figure
histogram(rmse)
xlabel("RMSE")
ylabel("Frequency")
meanrmse=mean(rmse); % network accuracy
%% Step6: Open Loop Forecasting
% Forecast Future Time Steps
idx = 2; % between 1 to 100
X = XTest{idx};
T = TTest{idx};
figure
stackedplot(X','LineWidth',2,'DisplayLabels',"channel "+ (1:numChannels) )
title("Test Observation " + idx)
xlabel("Time Step")
net = resetState(net);
offset = 75;
[net,~] = predictAndUpdateState(net,X(:,1:offset));
numTimeSteps = size(X,2);
numPredictionTimeSteps = numTimeSteps - offset;
Y = zeros(numChannels,numPredictionTimeSteps);
for t = 1:numPredictionTimeSteps
Xt = X(:,offset+t);
[net,Y(:,t)] = predictAndUpdateState(net,Xt);
end
% Compare the predictions with the target values.
figure
t = tiledlayout(numChannels,1);
title(t,"Open Loop Forecasting")
for i = 1:numChannels
nexttile
plot(T(i,:))
hold on
plot(offset:numTimeSteps,[T(i,offset) Y(i,:)],'--','LineWidth',2)
ylabel("Channel " + i)
end
xlabel("Time Step")
nexttile(1)
legend(["Input" "Forecasted"])
%% Step7: Closed Loop Forecasting
net = resetState(net);
offset = size(X,2);
[net,Z] = predictAndUpdateState(net,X);
numPredictionTimeSteps = 200;
Xt = Z(:,end);
Y = zeros(numChannels,numPredictionTimeSteps);
for t = 1:numPredictionTimeSteps
[net,Y(:,t)] = predictAndUpdateState(net,Xt);
Xt = Y(:,t);
end
numTimeSteps = offset + numPredictionTimeSteps;
% Visualize the forecasted values in a plot.
figure
t = tiledlayout(numChannels,1);
title(t,"Closed Loop Forecasting")
for i = 1:numChannels
nexttile
plot(T(i,1:offset))
hold on
plot(offset:numTimeSteps,[T(i,offset) Y(i,:)],'--','LineWidth',2)
ylabel("Channel " + i)
end
xlabel("Time Step")
nexttile(1)
legend(["Input" "Forecasted"])