-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
311 lines (260 loc) · 10.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import numpy as np
import time
import logging
import json
import os
from argparse import ArgumentParser
import tensorflow as tf
from sklearn.utils import shuffle
from collections import Counter
from models.cnn import NormalCNN, LatentFactorCNN, DoubleLatentCNN, LatentBiasCNN, LowerLatentFactorCNN, LatentWeightCNN, LatentFactorCNN2, LatentWeightOnlyCNN, OneHotCNN, MyLatentWeightCNN, MAPFullMultilevelCNN, MAPFactoredMultilevelCNN
from models.baselines import MLP, OneHotMLP, MultilevelMLP, FactoredMultilevelMLP
from models.lstm import NormalLSTM, LatentFactorLSTM, DoubleLatentLSTM
from utils import set_logger
# Silence sklearn warnings
def warn(*args, **kwargs):
pass
import warnings
warnings.warn = warn
# filter numpy warnings
warnings.filterwarnings('ignore')
logging.getLogger("tensorflow").setLevel(logging.ERROR)
def parse_args():
parser = ArgumentParser()
parser.add_argument('--lr',
type=float,
default=0.004)
parser.add_argument('--lr-sched',
action='store_true')
parser.add_argument('--decay-steps',
type=int,
default=100)
parser.add_argument('--decay-rate',
type=float,
default=0.96)
parser.add_argument('--batch-size',
help='use larger epochs when using GPU e.g. 1000',
type=int,
default=100)
parser.add_argument('--num-epochs',
type=int,
default=1)
parser.add_argument('--data-dir',
help='directory with dataset folders',
type=str,
default='data')
parser.add_argument('--dataset',
help='name of dataset',
type=str,
default=None)
parser.add_argument('--data-size',
help='pick small or large version of dataset',
type=str,
choices=['small', 'large'])
parser.add_argument('--model-size',
help='use small or large model parameters',
type=str,
default='small')
parser.add_argument('--latent-config',
help=('\
Possible latent configurations for --latent-config:\n\
"none" : no latent variables\n\
"bias" : each output node gets a latent bias\n\
"factor" : append a latent vector to the layer before softmax\n\
"double" : two latent vector on last layer and second to last\n\
'),
type=str)
# TODO: try to make this more intuitive
# nargs input format e.g. `--z-dim 10 20` this will be parsed as [10,20]
parser.add_argument('--z-dim',
help='number of groups in each group level',
nargs='+',
type=int,
default=1)
parser.add_argument('--eval-every',
help='how many epochs in between evaluating on test set',
type=int,
default=1)
parser.add_argument('--print-freq',
help='how many times progress is printed per epoch',
type=int,
default=10)
parser.add_argument('--seed',
type=int,
default=None)
parser.add_argument('--testing',
help='write to experiments/tests to keep main exp_dir clean',
action='store_true')
parser.add_argument('--description',
help='add memorable note for context',
type=str,
default=None)
return parser.parse_args()
def make_experiment_directory(data_dir, dataset, testing):
"""
Experiments are logged in the experiments directory,
then further sorted by dataset and time.
TODO: give option to change experiment_dir
Args:
dataset (str) : name of dataset
testing (bool) : whether this is a test run
--- Example ---
experiments/
femnist/
2019-07-29_18-21-12/
hyperparams.json
training_stats.csv
train.log
model_weights.pickle
"""
timestr = time.strftime("%Y-%m-%d_%H-%M-%S")
experiment_dir = os.path.join('experiments', dataset, timestr)
# To avoid cluttering experiment directory while testing scripts
if testing:
experiment_dir = os.path.join('experiments', 'tests', timestr)
os.makedirs(experiment_dir)
return experiment_dir
def read_femnist_data(data_dir, data_size, seed):
"""Read in dataset arrays.
Args:
data_size (str) : request either the small
or large dataset
Returns a two lists of arrays, for training and testing. The arrays should be of the form [x, gid, gid2, ..., y]. This allows
decomposition into `inputs, labels = arr[:-1], arr[-1]`
"""
data_dir = os.path.join(data_dir, 'femnist', data_size)
load = lambda name: np.load(os.path.join(data_dir, name))
x_train = load('x_train.npy')
gid_train = load('gid_train.npy')
y_train = load('y_train.npy')
x_test = load('x_test.npy')
gid_test = load('gid_test.npy')
y_test = load('y_test.npy')
y_train = y_train.astype(np.int32)
y_test = y_test.astype(np.int32)
gid_train = gid_train.astype(np.int32)
gid_test = gid_test.astype(np.int32)
train_data = [x_train, gid_train, y_train]
test_data = [x_test, gid_test, y_test]
train_data = shuffle(*train_data, random_state=seed)
test_data = shuffle(*test_data, random_state=seed)
return train_data, test_data
def read_shakespeare_data(data_dir, data_size, seed):
"""Read in dataset arrays.
Args:
data_size (str) : request either the small
or large dataset
Returns a two lists of arrays, for training and testing. The arrays should be of the form [x, gid, gid2, ..., y]. This allows
decomposition into `inputs, labels = arr[:-1], arr[-1]`
"""
data_dir = os.path.join(data_dir, 'shakespeare_data', data_size)
load = lambda name: np.load(os.path.join(data_dir, name))
x_train = load('x_train.npy')
gid_train = load('gid_train.npy')
gid2_train = load('gid2_train.npy')
y_train = load('y_train.npy')
x_test = load('x_test.npy')
gid_test = load('gid_test.npy')
gid2_test = load('gid2_test.npy')
y_test = load('y_test.npy')
train_data = [x_train, gid_train, gid2_train, y_train]
test_data = [x_test, gid_test, gid2_test, y_test]
train_data = shuffle(*train_data, random_state=seed)
test_data = shuffle(*test_data, random_state=seed)
return train_data, test_data
def main():
start = time.time()
args = parse_args()
if args.seed is not None:
tf.random.set_seed(args.seed)
np.random.seed(args.seed)
experiment_dir = make_experiment_directory(args.data_dir, args.dataset, args.testing)
logger = set_logger(os.path.join(experiment_dir, 'train.log'))
with open(os.path.join(experiment_dir, 'hyperparams.json'), 'w') as f:
json.dump(vars(args), f, indent=4, sort_keys=True)
if args.lr_sched:
lr = tf.keras.optimizers.schedules.ExponentialDecay(
args.lr,
decay_steps=args.decay_steps,
decay_rate=args.decay_rate,
staircase=True)
else:
lr = args.lr
#optimizer = tf.keras.optimizers.Adam(learning_rate=lr)
# clipvalue=2.
optimizer = tf.keras.optimizers.Adam(learning_rate=args.lr, )
#optimizer = tf.keras.optimizers.RMSprop(learning_rate=args.lr, )
#import tensorflow_addons as tfa
#optimizer = tfa.optimizers.LazyAdam(learning_rate=args.lr)
#optimizer = tf.keras.optimizers.SGD(learning_rate=args.lr)
# Tensorflow by default sums over losses
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy()
kwargs = {
'optimizer' : optimizer,
'loss_fn' : loss_fn,
'args' : args,
'experiment_dir' : experiment_dir,
'logger' : logger
}
# TODO: possibly move this functionality into the read call,
# i.e. return data and model
if args.dataset=='femnist':
print('>>> Reading FEMNIST...')
train_data, test_data = read_femnist_data(
args.data_dir, args.data_size, args.seed)
model_dict = {
'none' : NormalCNN,
'factor' : LatentFactorCNN,
'double' : DoubleLatentCNN,
'bias' : LatentBiasCNN,
'lower' : LowerLatentFactorCNN,
'weight' : LatentWeightCNN,
'factor2' : LatentFactorCNN2,
#'weight-factor' : FactoredWeightCNN,
'weight-only' : LatentWeightOnlyCNN,
'mlp' : MLP, 'one-hot': OneHotMLP, 'ml-mlp': MultilevelMLP, 'fml-mlp':FactoredMultilevelMLP,
'one-hot-cnn' : OneHotCNN,
'my-ml-dense' : MyLatentWeightCNN,
'map-full' : MAPFullMultilevelCNN,
'map-factored' : MAPFactoredMultilevelCNN
}
else:
print('>>> Reading Shakespeare (not literally)...')
train_data, test_data = read_shakespeare_data(
args.data_dir, args.data_size, args.seed)
gid_train = train_data[1]
gid2_train = train_data[2]
num_groups = (
len(np.unique(gid_train)),
len(np.unique(gid2_train)))
kwargs['num_groups'] = num_groups
# TODO: update to dict structure
if args.latent_config=='none':
model = NormalLSTM(**kwargs)
elif args.latent_config=='factor':
model = LatentFactorLSTM(**kwargs)
elif args.latent_config=='double':
model = DoubleLatentLSTM(**kwargs)
# elif args.latent_config=='bias':
# model = LatentBiasLSTM(**kwargs)
else:
raise ValueError('No matching latent variable configuration')
# TODO: should be a cleaner way to get number of unique groups
_, gid_train, _ = train_data
# num_groups should be provided as an array-like, even if only one elt
num_groups = (len(np.unique(gid_train)),)
train_size = gid_train.shape[0]
kwargs['train_size'] = train_size
kwargs['num_groups'] = num_groups
# Used later for KL scaling, group_train_sizes[i] gives
# number of datapoints for group i
count_dict = Counter(gid_train)
kwargs['group_train_sizes'] = [count_dict[i] for i in range(num_groups[0])]
num_batches = np.ceil(train_size)/args.batch_size
kwargs['kl_weight'] = tf.convert_to_tensor(1/num_batches, dtype=tf.float32)
model = model_dict[args.latent_config](**kwargs)
model.train(train_data, test_data, args.batch_size, args.num_epochs, args.eval_every, args.print_freq)
end = time.time()
logger.info('Finished in {}s'.format(round(end-start)))
if __name__ == '__main__':
main()