-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathfacenet.py
622 lines (508 loc) · 21.7 KB
/
facenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
"""Facial recognition with FaceNet in Keras, TensorFlow, or TensorRT.
"""
from copy import copy
import json
import os
from timeit import default_timer as timer
import threading
import random
import cv2
import numpy as np
from sklearn import neighbors, svm
from termcolor import colored
try:
import pycuda.autoinit # noqa
import pycuda.driver as cuda # noqa
except (ModuleNotFoundError, ImportError) as e:
print(f"[DEBUG] '{e}'. Ignore if GPU is not set up")
try:
import tensorrt as trt # noqa
except (ModuleNotFoundError, ImportError) as e:
print(f"[DEBUG] '{e}'. Ignore if GPU is not set up")
from util.common import DB_LOB, DEFAULT_MODEL, name_cleanup
from util.detection import FaceDetector, is_looking
from util.distance import DistMetric
from util.pbar import ProgressBar
from util.visuals import Camera, GraphicsRenderer
from util.log import Logger
from util.loader import (
print_time,
screen_data,
strip_id,
retrieve_embeds,
get_frozen_graph,
)
class FaceNet:
"""Class implementation of FaceNet"""
@print_time("model load time")
def __init__(
self,
model_path=DEFAULT_MODEL,
data_path=DB_LOB,
input_name="input",
output_name="embeddings",
input_shape=(160, 160),
classifier="svm",
gpu_alloc=False,
):
"""Initializes FaceNet object
:param model_path: path to model (default: utils.paths.DEFAULT_MODEL)
:param data_path: path to data (default: utils.paths.DB_LOB)
:param input_name: input - TF mode only (default: "input:0")
:param output_name: output - TF mode only (default: "embeddings:0")
:param input_shape: input shape in HW (default: (160, 160))
:param classifier: classifier type (default: 'svm')
:param gpu_alloc: allow GPU growth (default: False)
"""
assert os.path.exists(model_path), f"{model_path} not found"
assert not data_path or os.path.exists(data_path), f"{data_path} not found"
if gpu_alloc:
import tensorflow as tf # noqa
try:
gpus = tf.config.experimental.list_physical_devices("GPU")
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
except RuntimeError as err:
print(err)
if ".h5" in model_path:
self._keras_init(model_path)
elif ".tflite" in model_path:
self._tflite_init(model_path)
elif ".pb" in model_path:
self._tf_init(
model_path, input_name + ":0", output_name + ":0", input_shape
)
elif ".engine" in model_path:
self._trt_init(model_path, input_shape)
else:
raise TypeError("model must be an .h5, .pb, or .engine file")
print(f"[DEBUG] inference backend is {self.mode}")
self._db = {}
self._db_threshold = {}
self._db_threshold_stripped = {}
self.classifier = None
self.classifier_type = classifier
if data_path:
self.set_data(*retrieve_embeds(data_path))
else:
print("[DEBUG] data not set. Set it manually with set_data")
@property
def data(self):
"""Property for static database of embeddings
:returns: self._db
"""
return self._db
@property
def metadata(self):
return {
"metric": self.dist_metric.metric,
"normalize": self.dist_metric.normalize,
"alpha": self.alpha,
"img_norm": self.img_norm,
}
@property
def data_threshold(self):
"""Property for static database of thresholds
:returns: self._db_threshold
"""
return self._db_threshold
def _keras_init(self, filepath):
"""Initializes a Keras model
:param filepath: path to model (.h5)
"""
import tensorflow.compat.v1 as tf # noqa
self.mode = "keras"
self.facenet = tf.keras.models.load_model(filepath)
self.img_shape = self.facenet.input_shape[1:3]
def _tflite_init(self, filepath):
"""Initializes a tflite model interpreter
:param filepath: path to model (.tflite)
"""
import tensorflow.compat.v1 as tf # noqa
self.mode = "tflite"
self.facenet = tf.lite.Interpreter(model_path=filepath)
self.facenet.allocate_tensors()
self.input_details = self.facenet.get_input_details()
self.output_details = self.facenet.get_output_details()
self.img_shape = self.input_details[0]["shape"].tolist()[1:-1]
def _tf_init(self, filepath, input_name, output_name, input_shape):
"""Initializes a TensorFlow model
:param filepath: path to model (.pb)
:param input_name: name of input tensor
:param output_name: name of output tensor
:param input_shape: input shape for facenet
"""
import tensorflow.compat.v1 as tf # noqa
self.mode = "tf"
self.input_name = input_name
self.output_name = output_name
self.img_shape = input_shape
graph_def = get_frozen_graph(filepath)
self.sess = tf.keras.backend.get_session()
tf.import_graph_def(graph_def, name="")
self.facenet = self.sess.graph
def _trt_init(self, filepath, input_shape):
"""TensorRT initialization
:param filepath: path to serialized engine
:param input_shape: input shape
"""
self.mode = "trt"
try:
self.dev_ctx = cuda.Device(0).make_context()
self.stream = cuda.Stream()
trt_logger = trt.Logger(trt.Logger.INFO)
runtime = trt.Runtime(trt_logger)
with open(filepath, "rb") as model:
self.facenet = runtime.deserialize_cuda_engine(model.read())
self.context = self.facenet.create_execution_context()
self.h_input = cuda.pagelocked_empty(
trt.volume(self.context.get_binding_shape(0)), dtype=np.float32
)
self.h_output = cuda.pagelocked_empty(
trt.volume(self.context.get_binding_shape(1)), dtype=np.float32
)
self.d_input = cuda.mem_alloc(self.h_input.nbytes)
self.d_output = cuda.mem_alloc(self.h_output.nbytes)
print("here")
except NameError:
raise ValueError("trt mode requested but not available")
self.img_shape = input_shape
def add_entry(self, person, embeddings, train_classifier=True):
"""Adds entry (person, embeddings) to database
:param person: new entry
:param embeddings: new entry's list of embeddings
:param train_classifier: train classifier (default: True)
"""
screen_data(person, embeddings)
embeds = np.array(embeddings).reshape(len(embeddings), -1)
self._db[person] = embeds
self._db_threshold[person] = 0
stripped = strip_id(person)
self._stripped_names.append(stripped)
try:
embeds = np.concatenate([self._stripped_db[stripped], embeds])
except KeyError:
pass
self._stripped_db[stripped] = embeds
if train_classifier:
self._train_classifier()
def remove_entry(self, person, train_classifier=True):
"""Removes all embeds of person from database.
:param person: entry to remove
:param train_classifier: train classifier (default: True)
"""
keys = list(self.data.keys())
stripped = strip_id(person)
for name in keys:
if strip_id(name) == stripped:
del self._db[name]
del self._stripped_names[keys.index(name)]
try:
del self._stripped_db[stripped]
except KeyError:
pass
if train_classifier:
self._train_classifier()
def set_data(self, data, metadata):
"""Sets data property
:param data: new data in form {name: embedding vector, ...}
:param metadata: data metadata
"""
assert metadata, "metadata must be provided"
self._db = {}
self._stripped_db = {}
self._stripped_names = []
self.data_cfg = metadata
self.dist_metric = DistMetric(
self.data_cfg["metric"],
self.data_cfg["normalize"],
self.data_cfg.get("mean"),
)
self.alpha = self.data_cfg["alpha"]
self.img_norm = self.data_cfg["img_norm"]
if data:
for person, embed in data.items():
self.add_entry(person, embed, train_classifier=False)
self.apply_thresholds()
self._train_classifier()
def _train_classifier(self):
"""Trains person classifier"""
try:
if self.classifier_type == "svm":
self.classifier = svm.SVC(kernel="linear")
elif self.classifier_type == "knn":
self.classifier = neighbors.KNeighborsClassifier()
embeds = np.squeeze(list(self.data.values()), axis=1)
self.classifier.fit(embeds, self._stripped_names)
except (AttributeError, ValueError):
raise ValueError("Current model incompatible with database")
def normalize(self, imgs):
if self.img_norm == "per_image":
# linearly scales x to have mean of 0, variance of 1
std_adj = np.std(imgs, axis=(1, 2, 3), keepdims=True)
std_adj = np.maximum(std_adj, 1.0 / np.sqrt(imgs.size / len(imgs)))
mean = np.mean(imgs, axis=(1, 2, 3), keepdims=True)
return (imgs - mean) / std_adj
elif self.img_norm == "fixed":
# scales x to [-1, 1]
return (imgs - 127.5) / 128.0
else:
return imgs
def embed(self, imgs):
"""Embeds cropped face
:param imgs: list of cropped faces with shape (b, h, w, 3)
:returns: embedding as array with shape (1, -1)
"""
if self.mode == "keras":
embeds = self.facenet.predict(imgs, batch_size=len(imgs))
elif self.mode == "tf":
out = self.facenet.get_tensor_by_name(self.output_name)
embeds = self.sess.run(out, feed_dict={self.input_name: imgs})
elif self.mode == "tflite":
imgs = imgs.astype(np.float32)
self.facenet.set_tensor(self.input_details[0]["index"], imgs)
self.facenet.invoke()
embeds = self.facenet.get_tensor(self.output_details[0]["index"])
else:
if len(imgs) != 1:
raise NotImplementedError("trt batch not yet supported")
threading.Thread.__init__(self)
self.dev_ctx.push()
np.copyto(self.h_input, imgs.astype(np.float32).ravel())
cuda.memcpy_htod_async(self.d_input, self.h_input, self.stream)
self.context.execute_async(
batch_size=1,
bindings=[int(self.d_input), int(self.d_output)],
stream_handle=self.stream.handle,
)
cuda.memcpy_dtoh_async(self.h_output, self.d_output, self.stream)
self.stream.synchronize()
self.dev_ctx.pop()
embeds = np.copy(self.h_output)
return embeds.reshape(len(imgs), -1)
def predict(self, img, detector, margin=10, flip=False, verbose=True):
"""Embeds and normalizes an image from path or array
:param img: image to be predicted on (BGR image)
:param detector: FaceDetector object
:param margin: margin for MTCNN face cropping (default: 10)
:param flip: flip and concatenate or not (default: False)
:param verbose: verbosity (default: True)
:returns: normalized embeddings, facial coordinates
"""
cropped_faces, face_coords = detector.crop_face(img, margin, flip, verbose)
if cropped_faces is None:
return None, None
start = timer()
normalized = self.normalize(np.array(cropped_faces))
embeds = self.embed(normalized)
embeds = self.dist_metric.apply_norms(embeds, batch=True)
if verbose:
elapsed = round(1000.0 * (timer() - start), 2)
time = colored(f"{elapsed} ms", attrs=["bold"])
vecs = f"{len(embeds)} vector{'s' if len(embeds) > 1 else ''}"
print(f"Embedding time ({vecs}): {time}")
return embeds, face_coords
def recognize(self, img, *args, verbose=True, mode="cosine", **kwargs):
"""Facial recognition
:param img: image array in BGR mode
:param args: will be passed to self.predict
:param verbose: verbose or not (default: True)
:param kwargs: will be passed to self.predict
:param mode: ["cosine", "adaptive_threshold"]
:returns: face, is recognized, best match, time elapsed
"""
start = timer()
is_recognized = None
best_match = None
face = None
try:
embeds, face = self.predict(img, *args, **kwargs, verbose=verbose)
if embeds is not None:
intruder = self.is_intruder(embeds)
if not intruder:
if mode == "adaptive":
best_match = self.classifier.predict(embeds)[0]
other = np.average(self._stripped_db[best_match], axis=0)
simliarity_score = self.compute_similarity(embeds, other)
threshold = np.average(self._db_threshold_stripped[best_match])
is_recognized = simliarity_score >= threshold
if verbose and simliarity_score:
info = colored(
f"{round(simliarity_score, 4)} > {round(threshold, 4)} ({best_match})",
color="green" if is_recognized else "red",
)
print(f"adaptive thresholding: {info}")
elif mode == "cosine":
best_match = self.classifier.predict(embeds)[0]
nearest = self._stripped_db[best_match]
dists = self.dist_metric.distance(embeds, nearest, True)
dist = np.average(dists)
is_recognized = dist <= self.alpha
if verbose and dist:
info = colored(
f"{round(dist, 4)} ({best_match})",
color="green" if is_recognized else "red",
)
print(f"{self.dist_metric}: {info}")
else:
raise Exception("Invalid face recognition mode")
except (ValueError, cv2.error) as error:
incompatible = "query data dimension"
if isinstance(error, ValueError) and incompatible in str(error):
raise ValueError("Current model incompatible with database")
elif isinstance(error, cv2.error) and "resize" in str(error):
print("Frame capture failed")
else:
raise error
elapsed = round(1000.0 * (timer() - start), 4)
return face, is_recognized, best_match, elapsed
def real_time_recognize(
self,
width=640,
height=360,
resize=1.0,
detector="mtcnn",
flip=False,
graphics=True,
socket=None,
mtcnn_stride=1,
mode="cosine",
):
"""Real-time facial recognition
:param width: width of frame (default: 640)
:param height: height of frame (default: 360)
:param resize: resize scale (default: 1. = no resize)
:param detector: face detector type (default: "mtcnn")
:param flip: whether to flip horizontally or not (default: False)
:param graphics: whether or not to use graphics (default: True)
:param socket: socket (dev) (default: None)
:param mtcnn_stride: stride frame stride (default: 1)
:param mode: ["default", "adaptive_threshold"] (default: "default)
"""
assert self._db, "data must be provided"
assert 0.0 <= resize <= 1.0, "resize must be in [0., 1.]"
graphics_controller = GraphicsRenderer(width, height, resize)
logger = Logger(frame_limit=10, frame_threshold=5)
pbar = ProgressBar(logger, ws=socket)
cap = Camera()
detector = FaceDetector(
detector, self.img_shape, min_face_size=240, stride=mtcnn_stride
)
while True:
_, frame = cap.read()
cframe = frame.copy()
# resize frame
if resize != 1:
frame = cv2.resize(frame, (0, 0), fx=resize, fy=resize)
# facial detection and recognition
info = self.recognize(frame, detector, flip=flip, mode=mode)
face, is_recognized, best_match, elapsed = info
# logging and socket
if is_recognized and is_looking(face):
log_result = logger.log(best_match)
pbar.update(end=log_result is not None)
if log_result and socket:
socket.send(json.dumps({"best_match": best_match}))
# graphics
if graphics:
graphics_controller.add_graphics(cframe, *info)
cv2.imshow("AI Security v2021.0.1", cframe)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
cap.release()
cv2.destroyAllWindows()
def compute_similarity(self, embedding1, embedding2) -> float:
"""Calculates the similarity score.
Parameters:
embedding1 (embedding): The first embedding.
embedding2 (embedding): The second embedding to be compared with.
Returns (float):
Similarity score.
"""
return 1 - self.dist_metric.distance(embedding1, embedding2, True)[0]
def find_threshold(self, person) -> float:
"""Calculates the adaptive threshold for each person.
Parameters:
person (str): Person's name.
Returns (float):
The threshold value.
"""
embedding = self.data[person]
compares = []
people = copy(self.data)
del people[person]
people_thresholds = people.values()
for x in people_thresholds:
s = self.compute_similarity(embedding, x)
compares.append(s)
return np.max(np.std(compares))
def apply_thresholds(self) -> None:
"""Applys the threshold values to every person in the database."""
people = list(self.data.keys())
i = 0
for person in people:
thresholds = [0]
if i != 0:
thresholds = [0, self.find_threshold(people[i - 1])]
for j in range(len(people)):
person_name1 = name_cleanup(people[j])
person_name2 = name_cleanup(person)
if person_name1 != person_name2:
thresholds.append(
self.compute_similarity(self.data[people[j]], self.data[person])
)
self._db_threshold[person] = np.max(thresholds)
if name_cleanup(person) in list(self._db_threshold_stripped.keys()):
self._db_threshold_stripped[name_cleanup(person)].append(
self._db_threshold[person]
)
else:
self._db_threshold_stripped[name_cleanup(person)] = []
i += 1
def find_similar_embedding(self, embedding) -> int:
"""Returns index of similar embedding from self.data.
Parameters:
embedding (embedding): Embedding to be compared with.
"""
compares = []
for x in self.data.values():
s = self.compute_similarity(embedding, x)
compares.append(s)
return np.argmax(compares)
def is_intruder(self, embedding) -> bool:
"""Returns a boolean if the person's embedding is registered
in the database or not.
Parameters:
embedding (embedding): Embedding to be compared with.
Returns (bool):
Is intruder or not.
"""
simliar_index = self.find_similar_embedding(embedding)
other = list(self.data.values())[simliar_index]
simliarity_score = self.compute_similarity(embedding, other)
threshold = self.data_threshold[list(self.data.keys())[simliar_index]]
return simliarity_score < threshold
def adapt_evaluation(self, embedding, detected_person) -> bool:
"""This was in the article about adaptive thresholding.
https://arxiv.org/pdf/1810.11160.pdf
Parameters:
embedding (embedding): Embedding that is inputted into the recognition program
detected_person (str): The detected person's key in the database
Return (str):
Case type.
"""
simliar_index = self.find_similar_embedding(embedding)
other_key = list(self.data.keys())[simliar_index]
other_val = list(self.data.values())[simliar_index]
simliarity_score = self.compute_similarity(embedding, other_val)
threshold = self.data_threshold[list(self.data.keys())[simliar_index]]
case_type = None
if simliarity_score >= threshold and name_cleanup(other_key) == detected_person:
case_type = "true accept"
if simliarity_score < threshold and other_key in list(self.data.keys()):
case_type = "false reject"
if simliarity_score >= threshold and other_key not in list(self.data.keys()):
case_type = "false accept"
if simliarity_score < threshold and other_key not in list(self.data.keys()):
case_type = "true reject"
return case_type, simliarity_score