-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgame_runner_neat.py
593 lines (487 loc) · 28.4 KB
/
game_runner_neat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
import re
from typing import Type
import ray
from tqdm import tqdm
from baseGame import EvalGame, RunGame
import neat
import runnerConfiguration
import os.path
import os
import visualize
import sys
import random
import functools
from fitnessReporter import FitnessReporter
from datetime import datetime
import istarmap
import multiprocessing
from logReporting import LoggingReporter
from renderer import Renderer as RendererReporter
from videofig import videofig as vidfig
from neat.six_util import iteritems, itervalues
try:
from viztracer import log_sparse
except:
pass;
try:
from pympler import tracker
except:
tracker = None;
try:
import ray
from ray.util.queue import Queue
except:
ray = None;
#requires get_genome_frame.images to be set before call
def get_genome_frame(f,axes):
images = get_genome_frame.images;
if not get_genome_frame.initialized:
get_genome_frame.im = axes.imshow(images[f],animated=True);
get_genome_frame.initialized = True;
else:
get_genome_frame.im.set_array(images[f]);
class GameRunner:
#if using default version, create basic runner and specify game to run
def __init__(self,game:EvalGame,runnerConfig:runnerConfiguration.RunnerConfig):
self.game = game;
self.runConfig = runnerConfig;
self.generation:int = None;
def continue_run(self,run_name,render=False,manual_generation=None,manual_config_override=None,single_gen=False):
checkpoint_folder = 'checkpoints\\games\\'+self.runConfig.gameName.replace(' ','_')+'\\'+run_name.replace(' ','_');
if manual_generation is None:
files = os.listdir(checkpoint_folder);
maxGen = -1;
for file in files:
m = re.match("run-checkpoint-([0-9]+)",file);
if m:
gen = int(m.group(1));
if (gen>maxGen):
maxGen = gen;
pop = neat.Checkpointer.restore_checkpoint(checkpoint_folder + '\\run-checkpoint-' + str(maxGen) + ".gz",config_transfer=manual_config_override);
else:
pop = neat.Checkpointer.restore_checkpoint(checkpoint_folder + '\\run-checkpoint-' + str(manual_generation) + ".gz",config_transfer=manual_config_override);
return self.run(pop.config,run_name,render=render,pop=pop,single_gen=single_gen);
def replay_generation(self,generation,run_name,render=False,genome_config_edits=None):
checkpoint_folder = 'checkpoints\\games\\'+self.runConfig.gameName.replace(' ','_')+'\\'+run_name.replace(' ','_');
pop = neat.Checkpointer.restore_checkpoint(checkpoint_folder + '\\run-checkpoint-' + str(generation) + '.gz');
config = pop.config;
if (genome_config_edits is not None):
for k,v in genome_config_edits:
if hasattr(config.genome_config,k):
setattr(config.genome_config,k,v);
return self.run(config,run_name,render=render,pop=pop,single_gen=True);
def run(self,config,run_name,render=False,pop=None,single_gen=False,force_fitness=False):
self.run_name = run_name.replace(' ','_');
if (pop is None):
pop = neat.Population(config);
continuing = False;
else:
continuing = True;
stats = neat.StatisticsReporter();
if (self.runConfig.logging):
logReporter = LoggingReporter(self.runConfig.logPath,True);
pop.add_reporter(logReporter);
pop.add_reporter(stats);
pop.add_reporter(neat.StdOutReporter(True));
if not single_gen:
os.makedirs("checkpoints\\games\\"+self.runConfig.gameName.replace(' ','_')+f'\\{self.run_name}',exist_ok=True);
pop.add_reporter(neat.Checkpointer(1,filename_prefix='checkpoints\\games\\'+self.runConfig.gameName.replace(' ','_')+'\\'+self.run_name+'\\run-checkpoint-'));
if (render):
pop.add_reporter(RendererReporter(self));
if (hasattr(self.runConfig,'reporters') and self.runConfig.reporters != None):
for reporter in self.runConfig.reporters:
pop.add_reporter(reporter);
if (continuing):
pop.reporters.checkpoint_restored(pop.generation);
# pop.complete_generation();
if self.runConfig.parallel and not hasattr(self,'pool'):
if getattr(self.runConfig,'pool_type',None) == 'ray':
idQueue = Queue();
[idQueue.put(i) for i in range(self.runConfig.parallel_processes)];
self.pool:multiprocessing.Pool = multiprocessing.Pool(self.runConfig.parallel_processes, GenomeExecutor.initProcess,(idQueue,self.game));
else:
manager = multiprocessing.Manager()
idQueue = manager.Queue()
[idQueue.put(i) for i in range(self.runConfig.parallel_processes)];
self.pool:multiprocessing.Pool = multiprocessing.Pool(self.runConfig.parallel_processes, GenomeExecutor.initProcess,(idQueue,self.game));
if not single_gen or force_fitness:
self.fitness_reporter = FitnessReporter(self.runConfig.gameName,self.run_name);
pop.add_reporter(self.fitness_reporter);
self.generation = pop.generation;
winner = pop.run(self.eval_genomes,self.runConfig.generations if not single_gen else 1);
return winner;
def check_output_connections(self,generation,run_name,target_output,render=False):
file = 'checkpoints\\games\\'+self.runConfig.gameName.replace(' ','_')+'\\'+run_name.replace(' ','_')+'\\run-checkpoint-' + str(generation) + ".gz";
pop = neat.Checkpointer.restore_checkpoint(file);
connected = [];
for g in itervalues(pop.population):
for connection in g.connections:
if (connection[1] == target_output):
connected.append(g);
break;
[print (connectedGenome.key) for connectedGenome in connected];
def render_worst_genome(self,generation,config,run_name,net=False):
file = 'checkpoints\\games\\'+self.runConfig.gameName.replace(' ','_')+'\\'+run_name.replace(' ','_')+'\\run-checkpoint-' + str(generation) + ".gz";
pop = neat.Checkpointer.restore_checkpoint(file);
worst = None
for g in itervalues(pop.population):
if worst is None or g.fitness < worst.fitness:
worst = g
self.render_genome_by_id(worst.key,generation,config,run_name,net=net);
def render_genome_by_id(self,genomeId,generation,config,run_name,net=False):
file = 'checkpoints\\games\\'+self.runConfig.gameName.replace(' ','_')+'\\'+run_name.replace(' ','_')+'\\run-checkpoint-' + str(generation) + ".gz";
pop = neat.Checkpointer.restore_checkpoint(file);
genome = None;
for g in itervalues(pop.population):
if g.key == genomeId:
genome = g;
break;
self.render_genome(genome,config,net=net);
def render_custom_genome_object(self,obj,config,net=False):
self.render_genome(obj,config,net=net)
def replay_best(self,generation,config,run_name,net=False,randomReRoll=False,number=1):
if number < 1:
raise Exception("must replay at least one genome");
file = 'checkpoints\\games\\'+self.runConfig.gameName.replace(' ','_')+'\\'+run_name.replace(' ','_')+'\\run-checkpoint-' + str(generation) + ".gz";
pop = neat.Checkpointer.restore_checkpoint(file);
#self.eval_genomes(list(iteritems(pop.population)),config);
if (randomReRoll):
random.seed();
sort = sorted(pop.population.items(),key=lambda x: x[0]);
for _,g in sort[:number]:
self.render_genome(g,config,net=net);
def run_top_genomes(self,generation,config,run_name,number,doFitness=False,randomReRoll=False):
checkpoint_folder = 'checkpoints\\games\\'+self.runConfig.gameName.replace(' ','_')+'\\'+run_name.replace(' ','_');
pop = neat.Checkpointer.restore_checkpoint(checkpoint_folder + '\\run-checkpoint-' + str(generation) + '.gz');
config = pop.config;
if self.runConfig.parallel:
manager = multiprocessing.Manager()
idQueue = manager.Queue()
[idQueue.put(i) for i in range(self.runConfig.parallel_processes)];
self.pool:multiprocessing.Pool = multiprocessing.Pool(self.runConfig.parallel_processes, GenomeExecutor.initProcess,(idQueue,self.game));
self.run_name = run_name.replace(' ','_');
if doFitness:
self.fitness_reporter = FitnessReporter(self.runConfig.gameName,self.run_name + f"_top_{number}");
self.fitness_reporter.start_generation(generation);
if (randomReRoll):
random.seed();
sort = sorted(pop.population.items(),key=lambda x: x[0]);
self.eval_genomes(sort[:number],config);
def render_genome(self,genome,config,net=False):
if (net):
flattened_data = self.runConfig.flattened_return_data();
shaped_data = self.runConfig.return_data_shape();
visualize.draw_net(config,genome,view=True,node_names=dict([(-i-1,flattened_data[i]) for i in range(len(flattened_data))]),nodes_shape=shaped_data);
if self.runConfig.training_data is None:
if (self.runConfig.recurrent):
self.render_genome_recurrent(genome,config,net=net);
else:
self.render_genome_feedforward(genome,config,net=net);
else:
for datum in self.runConfig.training_data.active_data.values():
if (self.runConfig.recurrent):
self.render_genome_recurrent(genome,config,net=False,training_datum = datum);
else:
self.render_genome_feedforward(genome,config,net=False,training_datum = datum);
#render a genome with the game as a recurrent neural net
def render_genome_recurrent(self, genome, config,net=False):
runnerConfig = self.runConfig;
time_const = runnerConfig.time_step;
if (net):
flattened_data = runnerConfig.flattened_return_data();
shaped_data = runnerConfig.return_data_shape();
visualize.draw_net(config,genome,view=True,node_names=dict([(-i-1,flattened_data[i]) for i in range(len(flattened_data))]),nodes_shape=shaped_data);
if (runnerConfig.parallel and False):
return;
#TODO: implement parallel game processing
else:
net = neat.ctrnn.CTRNN.create(genome,config,time_const);
runningGame = self.game.start(runnerConfig);
images = [];
#get the current data from the running game, as specified by the runnerConfig
gameData = runningGame.getData();
while (runningGame.isRunning(useCache=True)):
#get the current inputs from the running game, as specified by the runnerConfig
gameInput = net.advance(gameData, time_const, time_const);
images.append(runningGame.tickRenderInput(gameInput));
gameData = runningGame.getData();
runningGame.close();
get_genome_frame.images = images;
get_genome_frame.initialized = False;
vidfig(len(images),get_genome_frame,play_fps=runnerConfig.playback_fps);
#render a genome with the game as a feedforward neural net
def render_genome_feedforward(self, genome, config,net=False,training_datum=None):
runnerConfig = self.runConfig;
if (net):
flattened_data = runnerConfig.flattened_return_data();
shaped_data = runnerConfig.return_data_shape();
visualize.draw_net(config,genome,view=True,node_names=dict([(-i-1,flattened_data[i]) for i in range(len(flattened_data))]),nodes_shape=shaped_data);
if (runnerConfig.parallel and False):
return;
#TODO: implement parallel game processing
else:
net = neat.nn.FeedForwardNetwork.create(genome,config);
runningGame = self.game.start(runnerConfig,training_datum = training_datum);
images = [];
fitness = 0;
if 'delta' in runnerConfig.fitness_collection_type:
fitness -= runningGame.getFitnessScore();
max_fitness = 0;
if 'max' in runnerConfig.fitness_collection_type:
max_fitness = runningGame.getFitnessScore();
#get the current inputs from the running game, as specified by the runnerConfig
gameData = runningGame.getData();
while (runningGame.isRunning(useCache=True)):
gameInput = net.activate(gameData);
if (self.runConfig.external_render):
images.append(runningGame.tickRenderInput(gameInput));
else:
runningGame.tickRenderInput(gameInput);
if ('continuous' in runnerConfig.fitness_collection_type):
fitness += runningGame.getFitnessScore();
elif ('max' in runnerConfig.fitness_collection_type):
max_fitness = max(max_fitness,runningGame.getFitnessScore());
gameData = runningGame.getData();
if 'max' in runnerConfig.fitness_collection_type:
fitness += max_fitness;
elif 'continuous' not in runnerConfig.fitness_collection_type: #prevent double counting
fitness += runningGame.getFitnessScore();
print('final genome fitness: ' + str(fitness));
runningGame.close();
if (self.runConfig.external_render):
get_genome_frame.images = images;
get_genome_frame.initialized = False;
vidfig(len(images),get_genome_frame,play_fps=runnerConfig.playback_fps);
def eval_genomes(self,genomes,config):
if (self.runConfig.recurrent):
self.eval_genomes_recurrent(genomes,config);
else:
self.eval_genomes_feedforward(genomes,config);
if self.generation is not None:
self.generation += 1;
#evaluate a population with the game as a recurrent neural net
def eval_genomes_recurrent(self, genomes, config):
runnerConfig = self.runConfig;
time_const = runnerConfig.time_step;
if (runnerConfig.parallel):
return;
#TODO: implement parallel game processing
else:
for genome_id, genome in genomes:
net = neat.ctrnn.CTRNN.create(genome,config,time_const);
fitnesses = [];
for trial in range(runnerConfig.numTrials):
runningGame = self.game.start(runnerConfig);
fitness = 0;
#get the current inputs from the running game, as specified by the runnerConfig
gameData = runningGame.getData();
while (runningGame.isRunning(useCache=True)):
gameInput = net.advance(gameData, time_const, time_const);
runningGame.tickInput(gameInput);
if (runnerConfig.fitness_collection_type != None and runnerConfig.fitness_collection_type == 'continuous'):
fitness += runningGame.getFitnessScore();
gameData = runningGame.getData();
fitness += runningGame.getFitnessScore();
fitnesses.append(fitness);
runningGame.close();
fitness = runnerConfig.fitnessFromArray(fitnesses);
genome.fitness = fitness;
#parallel versions of eval_genomes_feedforward - DUMMY FUNCTIONS, should never be passed to a parallel process; pass the GenomeExecutor function itself
def eval_genome_batch_feedforward(self,genomes,config,processNum):
return GenomeExecutor.eval_genome_batch_feedforward(config,self.runConfig,self.game,genomes,None)[1];
def eval_training_data_batch_feedforward(self,genomes,config,data):
return GenomeExecutor.eval_training_data_batch_feedforward(config,self.runConfig,self.game,genomes,data,None)[1];
#evaluate a population with the game as a feedforward neural net
def eval_genomes_feedforward(self, genomes, config):
for genome_id,genome in genomes:
genome.fitness = 0; #sanity check
if (self.runConfig.training_data is None):
if (self.runConfig.parallel):
batch_func = functools.partial(GenomeExecutor.map_eval_genome_feedforward,config,self.runConfig,self.game,gen=self.generation);
chunkFactor = 4;
if hasattr(self.runConfig,'chunkFactor') and self.runConfig.chunkFactor is not None:
chunkFactor = self.runConfig.chunkFactor;
chunkSize,extra = divmod(len(genomes),self.runConfig.parallel_processes * chunkFactor);
if extra:
chunkSize += 1;
print(f'Starting parallel processing for {len(genomes)} evals over {self.runConfig.parallel_processes} processes');
fitnesses = {};
for id,fitness in tqdm(self.pool.istarmap(batch_func,[(gen,gid) for gid,gen in genomes],chunksize=chunkSize),total=len(genomes)):
fitnesses[id]=fitness;
for genome_id,genome in genomes:
genome.fitness += fitnesses[genome_id];
else:
for genome_id, genome in tqdm(genomes):
genome.fitness += self.eval_genome_feedforward(genome,config)
else:
if (self.runConfig.parallel):
tdata = self.runConfig.training_data.active_data;
batch_func = functools.partial(GenomeExecutor.map_eval_genomes_feedforward,config,self.runConfig,self.game,genomes,gen=self.generation);
chunkFactor = 4;
if hasattr(self.runConfig,'chunkFactor') and self.runConfig.chunkFactor is not None:
chunkFactor = self.runConfig.chunkFactor;
chunkSize,extra = divmod(len(tdata), self.runConfig.parallel_processes * chunkFactor);
if extra:
chunkSize += 1;
print(f'Starting parallel processing for {len(genomes)*len(tdata)} evals over {self.runConfig.parallel_processes} processes');
datum_fitnesses = {};
for id,fitnesses in tqdm(self.pool.istarmap(batch_func,[(id,id) for id in tdata],chunksize=chunkSize),total=len(tdata)):
# print('id completed:',id);
datum_fitnesses[id] = fitnesses;
if hasattr(self.runConfig,"saveFitness") and self.runConfig.saveFitness:
self.fitness_reporter.save_data(datum_fitnesses);
for fitnesses in datum_fitnesses.values():
for genome_id,genome in genomes:
genome.fitness += fitnesses[genome_id];
else:
if hasattr(self.runConfig,"saveFitness") and self.runConfig.saveFitness:
fitness_data = {};
for did in tqdm(self.runConfig.training_data.active_data):
fitnesses = {};
for genome_id, genome in tqdm(genomes):
fitness = self.eval_genome_feedforward(genome,config,trainingDatumId=did)
fitnesses[genome_id] = fitness;
genome.fitness += fitness;
fitness_data[did] = fitnesses;
self.fitness_reporter.save_data(fitness_data);
else:
for did in tqdm(self.runConfig.training_data.active_data):
for genome_id, genome in tqdm(genomes):
genome.fitness += self.eval_genome_feedforward(genome,config,trainingDatumId=did)
def eval_genome_feedforward(self,genome,config,trainingDatumId:int=None):
return GenomeExecutor.eval_genome_feedforward(genome,config,self.runConfig,self.game,trainingDatumId=trainingDatumId);
class GenomeExecutorInterruptedException(Exception): pass; #idk man
@ray.remote
class GenomeExecutorManager():
pass;
#Genome Executor: Class that handles any and all genome processing, packaged and globalized for easier interface with parallelism
#Ok, so
#WHY does this exist, you may ask?
#This is pretty much entirely for multiprocessing reasons. These functions used to be part of the game_runner_neat class, but there ended up being a lot of pickling overhead, and - more importantly - process id assignment requires global variables.
#Since global variables are hard and dumb, I use class variables and class methods instead. Basically the same thing, but still encapsulated.
#These functions were almost entirely cut&pasted from the above class, and the functions were aliased for backwards compatibility
class GenomeExecutor:
pnum = None;
global_game = None;
count = 0;
generation = None;
last_checkpoint_time = None;
tr = None;
iterations_between = 0;
CHECKPOINT_INTERVAL = 0; # interval <= 0 means no checkins
#TODO: Abstractify this using gameClass methods
@classmethod
def initProcess(cls,id_queue,eGame:EvalGame):
cls.pnum = id_queue.get();
print(f"process {cls.pnum} started");
eGame.gameClass.initProcess(cls.pnum,eGame);
cls.count = 0;
if tracker is not None:
cls.tr = tracker.SummaryTracker();
cls.tr.diff();
#process methods - iterate within
@classmethod
def eval_genome_batch_feedforward(cls,config,runnerConfig,game,genomes,return_id,gen=None):
try:
if gen is not None:
if gen != cls.generation:
cls.count = 0;
cls.generation = gen;
fitnesses:dict[int,float] = {genome_id:0 for genome_id,_ in genomes};
for genome_id, genome in genomes:
cls.count += 1;
if cls.CHECKPOINT_INTERVAL > 0 and cls.count % cls.CHECKPOINT_INTERVAL == 0:
time = datetime.now()
print(f'Parallel Checkpoint - Process #{cls.pnum} at {time}' + ('' if cls.generation is None else f'; Count: {cls.count} evals completed this generation ({cls.generation})') + ('' if cls.last_checkpoint_time is None else f'; Eval Speed: {cls.CHECKPOINT_INTERVAL/(time-cls.last_checkpoint_time).total_seconds():.5f}'));
cls.last_checkpoint_time = time;
fitnesses[genome_id] += cls.eval_genome_feedforward(genome,config,runnerConfig,game);
return (return_id,fitnesses);
except KeyboardInterrupt:
raise GenomeExecutorInterruptedException();
@classmethod
def eval_training_data_batch_feedforward(cls,config,runnerConfig,game,genomes,data:list[int],return_id,gen=None):
try:
if gen is not None:
if gen != cls.generation:
cls.count = 0;
cls.generation = gen;
fitnesses:dict[int,float] = {genome_id:0 for genome_id,_ in genomes};
for datum_id in data:
for genome_id,genome in genomes:
fitnesses[genome_id] += cls.eval_genome_feedforward(genome,config,runnerConfig,game,trainingDatumId=datum_id);
cls.count += 1;
if cls.CHECKPOINT_INTERVAL > 0 and cls.count % cls.CHECKPOINT_INTERVAL == 0:
time = datetime.now()
print(f'Parallel Checkpoint - Process #{cls.pnum} at {time}' + ('' if cls.generation is None else f'; Count: {cls.count} evals completed this generation ({cls.generation})') + ('' if cls.last_checkpoint_time is None else f'; Eval Speed: {cls.CHECKPOINT_INTERVAL/(time-cls.last_checkpoint_time).total_seconds():.5f}'));
cls.last_checkpoint_time = time;
return (return_id,fitnesses);
except KeyboardInterrupt:
raise GenomeExecutorInterruptedException();
#map methods - iterate externally; return_id is used to recombine with i- or async- pool methods where order is not guaranteed
@classmethod
def map_eval_genomes_feedforward(cls,config,runnerConfig,game,genomes,datum_id,return_id,gen=None):
try:
if gen is not None:
if gen != cls.generation:
cls.count = 0;
cls.generation = gen;
fitnesses:dict[int,float] = {genome_id:0 for genome_id,_ in genomes};
for genome_id,genome in genomes:
cls.count += 1;
if cls.CHECKPOINT_INTERVAL > 0 and cls.count % cls.CHECKPOINT_INTERVAL == 0:
time = datetime.now()
print(f'Parallel Checkpoint - Process #{cls.pnum} at {time}' + ('' if cls.generation is None else f'; Count: {cls.count} evals completed this generation ({cls.generation})') + ('' if cls.last_checkpoint_time is None else f'; Eval Speed: {cls.CHECKPOINT_INTERVAL/(time-cls.last_checkpoint_time).total_seconds():.5f}'));
cls.last_checkpoint_time = time;
fitnesses[genome_id] += cls.eval_genome_feedforward(genome,config,runnerConfig,game,trainingDatumId=datum_id);
return (return_id,fitnesses);
except KeyboardInterrupt:
raise GenomeExecutorInterruptedException();
@classmethod
def map_eval_genome_feedforward(cls,config,runnerConfig,game,genome,return_id,gen=None):
try:
if gen is not None:
if gen != cls.generation:
cls.count = 0;
cls.generation = gen;
cls.count += 1;
if cls.CHECKPOINT_INTERVAL > 0 and cls.count % cls.CHECKPOINT_INTERVAL == 0:
time = datetime.now()
print(f'Parallel Checkpoint - Process #{cls.pnum} at {time}' + ('' if cls.generation is None else f'; Count: {cls.count} evals completed this generation ({cls.generation})') + ('' if cls.last_checkpoint_time is None else f'; Eval Speed: {cls.CHECKPOINT_INTERVAL/(time-cls.last_checkpoint_time).total_seconds():.5f}'));
cls.last_checkpoint_time = time;
return (return_id,cls.eval_genome_feedforward(genome,config,runnerConfig,game));
except KeyboardInterrupt:
raise GenomeExecutorInterruptedException();
@classmethod
def eval_genome_feedforward(cls,genome,config,runnerConfig:runnerConfiguration.RunnerConfig,game:EvalGame,trainingDatumId=None):
try:
net = neat.nn.FeedForwardNetwork.create(genome,config);
fitnesses:list[float] = [];
for _ in range(runnerConfig.numTrials):
fitness = 0;
runningGame = None;
if cls.pnum is not None:
runningGame = game.start(runnerConfig,training_datum_id = trainingDatumId, process_num = cls.pnum);
else:
runningGame = game.start(runnerConfig,training_datum_id = trainingDatumId)
if runnerConfig.fitness_collection_type != None and 'delta' in runnerConfig.fitness_collection_type:
fitness -= runningGame.getFitnessScore();
#get the current data from the running game, as specified by the runnerConfig
gameData = runningGame.getData();
while (runningGame.isRunning(useCache=True)):
try:
gameInput = net.activate(gameData);
except:
print('Error in activating net with data ', gameData, ' and mapped data ', runningGame.getMappedData());
print('Error body: ', sys.exc_info());
raise Exception();
runningGame.tickInput(gameInput);
if (runnerConfig.fitness_collection_type != None and 'continuous' in runnerConfig.fitness_collection_type):
fitness += runningGame.getFitnessScore();
gameData = runningGame.getData();
fitness += runningGame.getFitnessScore();
fitnesses.append(fitness);
runningGame.close();
fitness = runnerConfig.fitnessFromArray()(fitnesses);
return fitness;
except KeyboardInterrupt:
raise GenomeExecutorInterruptedException();