-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_tracks.py
77 lines (53 loc) · 3.14 KB
/
plot_tracks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import matplotlib.pyplot as plt
import numpy as np
from utils.parse_tracks import FijiManualTrack, QCTracksArray
from matplotlib_scalebar.scalebar import ScaleBar
manual_raw = r"c:\Users\Harrison Truscott\Documents\GitHub\cell-tracking\gcp_transfer\Segmentation Analysis\2023.4.2 OptoTiam Exp 53 $manual\scaled_qc_tracks_raw.pkl"
manual_smoothed = r"c:\Users\Harrison Truscott\Documents\GitHub\cell-tracking\gcp_transfer\Segmentation Analysis\2023.4.2 OptoTiam Exp 53 $manual\scaled_qc_tracks_smoothed.pkl"
# manual_source = r"C:\Users\Harrison Truscott\Documents\GitHub\cell-tracking\gcp_transfer\Segmentation Analysis\2023.4.2 OptoTiam Exp 53 $manual\manual tracks\down3 in pixels per frame.csv"
auto_raw = r"C:\Users\Harrison Truscott\Documents\GitHub\cell-tracking\gcp_transfer\Segmentation Analysis\2023.4.2 OptoTiam Exp 53\scaled_qc_tracks_raw.pkl"
auto_smoothed = r"C:\Users\Harrison Truscott\Documents\GitHub\cell-tracking\gcp_transfer\Segmentation Analysis\2023.4.2 OptoTiam Exp 53\scaled_qc_tracks_smoothed.pkl"
# microns_per_pixel = 1.625
#TODO: improve labelling, add micron scale bar and cell diameter marker
movie = 7
man_track = 5
auto_track = 7
# movie = 8
# man_track = 3
# auto_track = 14
for i in ["Raw","Smoothed","Gaussed"]:
fig = plt.figure();
if i == "Raw":
# print(QCTracksArray(manual_raw)[movie].keys())
# print(QCTracksArray(manual_smoothed)[movie].keys())
# print(QCTracksArray(auto_raw)[movie].keys())
# print(QCTracksArray(auto_smoothed)[movie].keys())
m = np.array(QCTracksArray(manual_raw)[movie][man_track])
a = np.array(QCTracksArray(auto_raw)[movie][auto_track])
elif i == "Smoothed":
m = np.array(QCTracksArray(manual_smoothed)[movie][man_track])
a = np.array(QCTracksArray(auto_smoothed)[movie][auto_track])
else:
from scipy.ndimage import gaussian_filter1d
def do_gauss(pos:np.ndarray,width:float):
pos = pos.copy()
for i in [0,1]:
pos[:,i] = gaussian_filter1d(pos[:,i],width)
return pos
m = do_gauss(np.array(QCTracksArray(manual_raw)[movie][man_track]),1.4)
a = do_gauss(np.array(QCTracksArray(auto_raw)[movie][auto_track]),1.4)
plt.plot(m[:,0],m[:,1],color="black",label="manual",marker='.')
plt.plot(*m[0],color="black",marker='o')
plt.arrow(*m[-2],*((m[-1]-m[-2])),color="black",shape='full', lw=0, length_includes_head=True, head_starts_at_zero=True, head_width=0.9)
plt.plot(a[:,0],a[:,1],color="red",label="auto",marker='.')
plt.plot(*a[0],color="red",marker='o')
plt.arrow(*a[-13],*((a[-1]-a[-13])),color="red",shape='full', lw=0, length_includes_head=True, head_starts_at_zero=True, head_width=0.9)
plt.xlabel("X position (microns)")
plt.ylabel("Y position (microns)")
# scale = ScaleBar(1,units = "um", location = "center right", rotation="vertical");
# plt.gca().add_artist(scale)
cellSize = ScaleBar(1,units="um", location="upper right", label="Cell diameter", fixed_value=30, frameon=False)
plt.gca().add_artist(cellSize)
plt.title(i + " Tracks: Manual vs Automatic")
plt.legend(loc="lower left")
plt.show()