Skip to content

Latest commit

 

History

History
97 lines (89 loc) · 4.01 KB

README.md

File metadata and controls

97 lines (89 loc) · 4.01 KB

Guide to BLIP-2 pipeline

  1. ViT and Qformer
  • Generate ONNX model files for ViT and Qformer

    python onnx_export.py

    The exported ONNX files lies in ./onnx/visual_encoder and ./onnx/Qformer. Moreover, it will save test image tensor to image.pt and visual query tokens to query_tokens.pt for later pipeline inference.

  • Build TensorRT engines

    python build_vit_qformer.py 0 # For ViT, FP16
    python build_vit_qformer.py 1 # For Qformer, FP16

    The built engines lie in ./plan/visual_encoder and ./plan/Qformer.

  1. BLIP2 OPT-2.7B
  • Download OPT-2.7B model checkpoint (same as original OPT-2.7B)

    # OPT-2.7B
    cd ../opt
    git-lfs clone https://huggingface.co/facebook/opt-2.7b
  • Convert original checkpoint to TRT-LLM checkpoint format (same as original OPT-2.7B)

    # OPT-2.7B
    python3 convert_checkpoint.py --model_dir ./opt-2.7b \
                --dtype float16 \
                --output_dir ./opt/2.7B/trt_ckpt/fp16/1-gpu/
  • Build TRT-LLM engines from TRT-LLM checkpoint (only need to add --max_prompt_embedding_table_size)

    NOTE: max_prompt_embedding_table_size = query_token_num * max_batch_size, so if you changes the max_batch_size, prompt table size must be reset accordingly.

    # OPT-2.7B
    trtllm-build --checkpoint_dir=./opt/2.7B/trt_ckpt/fp16/1-gpu/ \
                    --max_batch_size 8 \
                    --gemm_plugin float16 \
                    --max_input_len 924 \
                    --max_output_len 100 \
                    --max_beam_width 5 \
                    --paged_kv_cache disable \
                    --output_dir ../blip2/trt_engine/blip-2-opt-2.7b/fp16/1-gpu \
                    --max_prompt_embedding_table_size 256 # 256 = 32 (query_token number) * 8 (max_batch_size)

    The built OPT engines lie in ./trt_engine/blip-2-opt-2.7b/fp16/1-gpu.

    UPDATE[2023-09-21]: We have newly added INT8/INT4 weight-only support for OPT. So you can enable it using commands as follows (take INT4 as an example, while INT8 is the default precision for weight-only quantization):

    # OPT-2.7B
    python3 convert_checkpoint.py --model_dir ./opt-2.7b \
                --dtype float16 \
                --output_dir ./opt/2.7B/trt_ckpt/int4_weightonly/1-gpu/
                --use_weight_only \
                --weight_only_precision int4
    
    trtllm-build --checkpoint_dir=./opt/2.7B/trt_ckpt/int4_weightonly/1-gpu/ \
                    --max_batch_size 8 \
                    --gemm_plugin float16 \
                    --max_input_len 924 \
                    --max_output_len 100 \
                    --max_beam_width 5 \
                    --paged_kv_cache disable \
                    --output_dir ../blip2/trt_engine/blip-2-opt-2.7b/int4_weightonly/1-gpu \
                    --max_prompt_embedding_table_size 256 # 256 = 32 (query_token number) * 8 (max_batch_size)

    The built OPT engines lie in ./trt_engine/blip-2-opt-2.7b/int4_weightonly/1-gpu.

  1. Assemble everything into BLIP-2 pipeline FP16 pipeline

    # BLIP OPT-2.7B
    cd ../blip2
    python run.py --num_beams 1 \
                  --max_txt_len 32 \
                  --max_output_len 30 \
                  --input_text "Question: which city is this? Answer:" \
                  --engine_dir ./plan \
                  --opt_engine_dir trt_engine/blip-2-opt-2.7b/fp16/1-gpu \
                  --input_dir image.pt \
                  --query_tokens query_tokens.pt

    INT8/INT4 weight-only quantization pipeline

    # BLIP OPT-2.7B
    cd ../blip2
    python run.py --num_beams 1 \
                  --max_txt_len 32 \
                  --max_output_len 30 \
                  --input_text "Question: which city is this? Answer:" \
                  --engine_dir ./plan \
                  --opt_engine_dir trt_engine/blip-2-opt-2.7b/int4_weightonly/1-gpu \
                  --input_dir image.pt \
                  --query_tokens query_tokens.pt