forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathweight.py
619 lines (574 loc) · 27.9 KB
/
weight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import configparser
import logging
import time
from pathlib import Path
import numpy as np
import torch
import tensorrt_llm
from tensorrt_llm._utils import (numpy_to_torch, pad_vocab_size,
str_dtype_to_np, str_dtype_to_torch,
torch_to_numpy)
from tensorrt_llm.functional import is_gated_activation
from tensorrt_llm.models import GPTLMHeadModel
from tensorrt_llm.quantization import QuantMode
LOGGER = logging.getLogger(__name__)
def gen_suffix(rank, use_smooth_quant, quant_per_channel):
suffix = f"{rank}.bin"
if use_smooth_quant:
sq_prefix = "int8."
if quant_per_channel:
sq_prefix += "col."
suffix = sq_prefix + suffix
return suffix
def extract_layer_idx(name):
ss = name.split('.')
for s in ss:
if s.isdigit():
return s
return None
def split(v, tp_size, idx, dim=0):
if tp_size == 1:
return v
if len(v.shape) == 1:
return np.ascontiguousarray(np.split(v, tp_size)[idx])
elif len(v.shape) == 2:
return np.ascontiguousarray(np.split(v, tp_size, axis=dim)[idx])
return None
def parse_ft_config(ini_file):
gpt_config = configparser.ConfigParser()
gpt_config.read(ini_file)
n_embd = gpt_config.getint('gpt', 'n_embd')
n_head = gpt_config.getint('gpt', 'n_head')
n_layer = gpt_config.getint('gpt', 'n_layer')
n_positions = gpt_config.getint('gpt', 'n_positions')
vocab_size = gpt_config.getint('gpt', 'vocab_size')
do_layer_norm_before = gpt_config.getboolean('gpt',
'do_layer_norm_before',
fallback=True)
rotary_base = gpt_config.getfloat('gpt', 'rotary_base', fallback=None)
rotary_scaling_type = gpt_config.get('gpt',
'rotary_scaling_type',
fallback=None)
rotary_scaling_factor = gpt_config.get('gpt',
'rotary_scaling_factor',
fallback=None)
if rotary_scaling_type is None:
if rotary_scaling_factor is not None:
raise ValueError(
f"'rotary_scaling_factor={rotary_scaling_factor}' is found in ini "
f"config file {ini_file}, whereas 'rotary_scaling_type' is missing "
f"in the config. The 'rotary_scaling_factor' will be ignored and "
f"rotary scaling will not be used.")
rotary_scaling = None
else:
if rotary_scaling_factor is None:
raise ValueError(
f"'rotary_scaling_factor={rotary_scaling_factor}' was not found "
f"in ini config file {ini_file}, whereas 'rotary_scaling_type' is "
f"provided and equals {repr(rotary_scaling_type)}.")
rotary_scaling = [rotary_scaling_type, rotary_scaling_factor]
rotary_pct = gpt_config.getfloat('gpt', 'rotary_pct', fallback=None)
hidden_act = gpt_config.get('gpt', 'activation_function')
bias = gpt_config.getboolean('gpt', 'bias', fallback=True)
inter_size = gpt_config.getint('gpt', 'intermediate_size', fallback=None)
dtype = gpt_config.get('gpt', 'storage_dtype', fallback='float32')
if inter_size is None:
inter_size = 4 * n_embd
multi_query_mode = gpt_config.getboolean('gpt',
'multi_query_mode',
fallback=False)
prompt_num_tasks = gpt_config.getint('gpt', 'prompt_num_tasks', fallback=0)
prompt_max_vocab_size = gpt_config.getint('gpt',
'prompt_max_vocab_size',
fallback=0)
return {
"n_embd": n_embd,
"n_head": n_head,
"n_layer": n_layer,
"n_positions": n_positions,
"vocab_size": vocab_size,
"do_layer_norm_before": do_layer_norm_before,
"hidden_act": hidden_act,
"rotary_pct": rotary_pct,
"rotary_base": rotary_base,
"rotary_scaling": rotary_scaling,
"bias": bias,
"inter_size": inter_size,
"multi_query_mode": multi_query_mode,
"dtype": dtype,
"prompt_num_tasks": prompt_num_tasks,
"prompt_max_vocab_size": prompt_max_vocab_size
}
def check_embedding_share(dir_path):
share_embedding_table = False
lm_file = dir_path + '/' + 'model.lm_head.weight.bin'
if not Path(lm_file).exists():
share_embedding_table = True
return share_embedding_table
def load_from_ft(tensorrt_llm_gpt: GPTLMHeadModel,
dir_path,
rank=0,
tensor_parallel=1,
dtype='float32',
use_parallel_embedding=False,
sharding_dim=0,
share_embedding_table=False,
scaling_factors=None):
tensorrt_llm.logger.info('Loading weights from FT...')
tik = time.time()
quant_mode = getattr(tensorrt_llm_gpt, 'quant_mode', QuantMode(0))
if quant_mode.is_int8_weight_only():
plugin_weight_only_quant_type = torch.int8
elif quant_mode.is_int4_weight_only():
plugin_weight_only_quant_type = torch.quint4x2
_parsed_params = parse_ft_config(Path(dir_path) / 'config.ini')
n_embd = _parsed_params["n_embd"]
n_head = _parsed_params["n_head"]
n_layer = _parsed_params["n_layer"]
n_positions = _parsed_params["n_positions"]
vocab_size = _parsed_params["vocab_size"]
do_layer_norm_before = _parsed_params["do_layer_norm_before"]
hidden_act = _parsed_params["hidden_act"]
bias = _parsed_params["bias"]
inter_size = _parsed_params["inter_size"]
multi_query_mode = _parsed_params["multi_query_mode"]
np_dtype = str_dtype_to_np(dtype)
def fromfile(dir_path, name, shape=None, dtype=None):
dtype = np_dtype if dtype is None else dtype
p = dir_path + '/' + name
if Path(p).exists():
t = np.fromfile(p, dtype=dtype)
if shape is not None:
t = t.reshape(shape)
return t
return None
def set_smoothquant_scale_factors(module,
pre_scale_weight,
dir_path,
basename,
shape,
per_tok_dyn,
per_channel,
is_qkv=False,
rank=None):
suffix = "bin"
if per_channel:
if rank is not None:
suffix = f"{rank}." + suffix
suffix = "col." + suffix
col_shape = shape if (per_channel or is_qkv) else [1, 1]
if per_tok_dyn:
if pre_scale_weight is not None:
pre_scale_weight.value = np.array([1.0], dtype=np.float32)
t = fromfile(dir_path, f"{basename}scale_w_quant_orig.{suffix}",
col_shape, np.float32)
module.per_channel_scale.value = t
else:
t = fromfile(dir_path, f"{basename}scale_x_orig_quant.bin", [1],
np.float32)
pre_scale_weight.value = t
t = fromfile(dir_path, f"{basename}scale_y_accum_quant.{suffix}",
col_shape, np.float32)
module.per_channel_scale.value = t
t = fromfile(dir_path, f"{basename}scale_y_quant_orig.bin", [1, 1],
np.float32)
module.act_scale.value = t
# Determine the quantization mode.
quant_mode = getattr(tensorrt_llm_gpt, "quant_mode", QuantMode(0))
# Do we use SmoothQuant?
use_smooth_quant = quant_mode.has_act_and_weight_quant()
# Do we use quantization per token?
quant_per_token_dyn = quant_mode.has_per_token_dynamic_scaling()
# Do we use quantization per channel?
quant_per_channel = quant_mode.has_per_channel_scaling()
# Do we use INT4/INT8 weight-only?
use_weight_only = quant_mode.is_weight_only()
# Int8 KV cache
use_int8_kv_cache = quant_mode.has_int8_kv_cache()
#Enable FP8 Gemm
enable_fp8_qdq = quant_mode.has_fp8_qdq()
# Debug
suffix = gen_suffix(rank, use_smooth_quant, quant_per_channel)
# The type of weights.
w_type = np_dtype if not use_smooth_quant else np.int8
pe = fromfile(dir_path, 'model.wpe.bin', [n_positions, n_embd])
if pe is not None:
tensorrt_llm_gpt.position_embedding.weight.value = (pe)
vocab_embedding_weight = fromfile(dir_path, 'model.wte.bin',
[vocab_size, n_embd])
if not use_parallel_embedding:
tensorrt_llm_gpt.vocab_embedding.weight.value = vocab_embedding_weight
else:
if sharding_dim == 0:
if vocab_size % tensor_parallel != 0:
# padding
vocab_size_padded = pad_vocab_size(
tensorrt_llm_gpt.vocab_embedding.num_embeddings,
tensor_parallel)
pad_width = vocab_size_padded - vocab_size
vocab_embedding_weight = np.pad(vocab_embedding_weight,
((0, pad_width), (0, 0)),
'constant',
constant_values=0)
tensorrt_llm_gpt.vocab_embedding.weight.value = np.ascontiguousarray(
split(vocab_embedding_weight,
tensor_parallel,
rank,
dim=sharding_dim))
if do_layer_norm_before:
tensorrt_llm_gpt.ln_f.bias.value = (fromfile(
dir_path, 'model.final_layernorm.bias.bin'))
tensorrt_llm_gpt.ln_f.weight.value = (fromfile(
dir_path, 'model.final_layernorm.weight.bin'))
# share input embedding
if not share_embedding_table:
lm_head_weight = fromfile(dir_path, 'model.lm_head.weight.bin',
[vocab_size, n_embd])
if lm_head_weight is None:
lm_head_weight = fromfile(dir_path, 'model.wte.bin',
[vocab_size, n_embd])
if vocab_size % tensor_parallel != 0:
# padding
vocab_size_padded = tensorrt_llm_gpt.lm_head.out_features * tensor_parallel
pad_width = vocab_size_padded - vocab_size
lm_head_weight = np.pad(lm_head_weight, ((0, pad_width), (0, 0)),
'constant',
constant_values=0)
tensorrt_llm_gpt.lm_head.weight.value = np.ascontiguousarray(
split(lm_head_weight, tensor_parallel, rank))
fake_fp8_sf_dt = np.float32
for i in range(n_layer):
c_attn_out_dim = (3 * n_embd //
tensor_parallel) if not multi_query_mode else (
n_embd // tensor_parallel +
(n_embd // n_head) * 2)
gpt_layer = tensorrt_llm_gpt.layers[i]
gpt_layer.input_layernorm.weight.value = (fromfile(
dir_path, 'model.layers.' + str(i) + '.input_layernorm.weight.bin'))
gpt_layer.input_layernorm.bias.value = (fromfile(
dir_path, 'model.layers.' + str(i) + '.input_layernorm.bias.bin'))
t = fromfile(
dir_path, 'model.layers.' + str(i) +
'.attention.query_key_value.weight.' + suffix,
[n_embd, c_attn_out_dim], w_type)
if t is not None:
dst = gpt_layer.attention.qkv.weight
if use_smooth_quant:
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
set_smoothquant_scale_factors(
gpt_layer.attention.qkv,
gpt_layer.input_layernorm.scale_to_int,
dir_path,
'model.layers.' + str(i) + '.attention.query_key_value.',
[1, c_attn_out_dim],
quant_per_token_dyn,
quant_per_channel,
rank=rank,
is_qkv=True)
elif use_weight_only:
processed_torch_weights, torch_weight_scales = torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
numpy_to_torch(t), plugin_weight_only_quant_type)
dst.value = torch_to_numpy(processed_torch_weights)
scales = tensorrt_llm_gpt.layers[
i].attention.qkv.per_channel_scale
scales.value = torch_to_numpy(torch_weight_scales)
else:
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
if bias:
t = fromfile(
dir_path, 'model.layers.' + str(i) +
'.attention.query_key_value.bias.' + str(rank) + '.bin')
if t is not None:
dst = gpt_layer.attention.qkv.bias
dst.value = np.ascontiguousarray(t)
if enable_fp8_qdq:
tensorrt_llm_gpt.layers[
i].attention.qkv.activation_scaling_factor.value = np.array(
[scaling_factors['qkv_act'][i]], dtype=fake_fp8_sf_dt)
tensorrt_llm_gpt.layers[
i].attention.qkv.weights_scaling_factor.value = np.array(
[scaling_factors['qkv_weights'][i]], dtype=fake_fp8_sf_dt)
tensorrt_llm_gpt.layers[
i].attention.kv_cache_scaling_factor.value = np.array(
[scaling_factors['qkv_output'][i]], dtype=np.float32)
dst = gpt_layer.attention.dense.weight
t = fromfile(
dir_path,
'model.layers.' + str(i) + '.attention.dense.weight.' + suffix,
[n_embd // tensor_parallel, n_embd], w_type)
if use_smooth_quant:
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
dense_scale = getattr(gpt_layer.attention,
"quantization_scaling_factor", None)
set_smoothquant_scale_factors(
gpt_layer.attention.dense, dense_scale, dir_path,
'model.layers.' + str(i) + '.attention.dense.', [1, n_embd],
quant_per_token_dyn, quant_per_channel)
# change it to the real smoother if dense layer is applied smooth quant
gpt_layer.attention.dense.smoother.value = np.ones(
[1, n_embd // tensor_parallel], dtype=np.float32)
elif use_weight_only:
processed_torch_weights, torch_weight_scales = torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
numpy_to_torch(t), plugin_weight_only_quant_type)
dst.value = torch_to_numpy(processed_torch_weights)
scales = tensorrt_llm_gpt.layers[
i].attention.dense.per_channel_scale
scales.value = torch_to_numpy(torch_weight_scales)
else:
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
if bias:
dst = gpt_layer.attention.dense.bias
dst.value = fromfile(
dir_path,
'model.layers.' + str(i) + '.attention.dense.bias.bin')
if enable_fp8_qdq:
tensorrt_llm_gpt.layers[
i].attention.dense.activation_scaling_factor.value = np.array(
[scaling_factors['dense_act'][i]], dtype=fake_fp8_sf_dt)
tensorrt_llm_gpt.layers[
i].attention.dense.weights_scaling_factor.value = np.array(
[scaling_factors['dense_weights'][i]], dtype=fake_fp8_sf_dt)
dst = gpt_layer.post_layernorm.weight
dst.value = fromfile(
dir_path,
'model.layers.' + str(i) + '.post_attention_layernorm.weight.bin')
dst = gpt_layer.post_layernorm.bias
dst.value = fromfile(
dir_path,
'model.layers.' + str(i) + '.post_attention_layernorm.bias.bin')
t = fromfile(
dir_path,
'model.layers.' + str(i) + '.mlp.dense_h_to_4h.weight.' + suffix,
[n_embd, inter_size // tensor_parallel], w_type)
if use_smooth_quant:
tensorrt_llm_gpt.layers[
i].mlp.fc.weight.value = np.ascontiguousarray(
np.transpose(t, [1, 0]))
set_smoothquant_scale_factors(gpt_layer.mlp.fc,
gpt_layer.post_layernorm.scale_to_int,
dir_path,
'model.layers.' + str(i) +
'.mlp.dense_h_to_4h.',
[1, inter_size // tensor_parallel],
quant_per_token_dyn,
quant_per_channel,
rank=rank)
elif use_weight_only:
dst = gpt_layer.mlp.fc.weight
processed_torch_weights, torch_weight_scales = torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
numpy_to_torch(t), plugin_weight_only_quant_type)
dst.value = torch_to_numpy(processed_torch_weights)
scales = gpt_layer.mlp.fc.per_channel_scale
scales.value = torch_to_numpy(torch_weight_scales)
else:
tensorrt_llm_gpt.layers[
i].mlp.fc.weight.value = np.ascontiguousarray(
np.transpose(t, [1, 0]))
if bias:
gpt_layer.mlp.fc.bias.value = fromfile(
dir_path, 'model.layers.' + str(i) +
'.mlp.dense_h_to_4h.bias.' + str(rank) + '.bin')
if is_gated_activation(hidden_act):
t = fromfile(
dir_path, 'model.layers.' + str(i) +
'.mlp.dense_h_to_4h.gate.weight.' + str(rank) + '.bin',
[n_embd, inter_size // tensor_parallel])
tensorrt_llm_gpt.layers[
i].mlp.gate.weight.value = np.ascontiguousarray(
np.transpose(t, [1, 0]))
if enable_fp8_qdq:
tensorrt_llm_gpt.layers[
i].mlp.fc.activation_scaling_factor.value = np.array(
[scaling_factors['fc_act'][i]], dtype=fake_fp8_sf_dt)
tensorrt_llm_gpt.layers[
i].mlp.fc.weights_scaling_factor.value = np.array(
[scaling_factors['fc_weights'][i]], dtype=fake_fp8_sf_dt)
t = fromfile(
dir_path,
'model.layers.' + str(i) + '.mlp.dense_4h_to_h.weight.' + suffix,
[inter_size // tensor_parallel, n_embd], w_type)
if use_smooth_quant:
tensorrt_llm_gpt.layers[
i].mlp.proj.weight.value = np.ascontiguousarray(
np.transpose(t, [1, 0]))
proj_scale = getattr(gpt_layer.mlp, "quantization_scaling_factor",
None)
set_smoothquant_scale_factors(
gpt_layer.mlp.proj, proj_scale, dir_path,
'model.layers.' + str(i) + '.mlp.dense_4h_to_h.', [1, n_embd],
quant_per_token_dyn, quant_per_channel)
# change it to the real smoother if proj layer is applied smooth quant
gpt_layer.mlp.proj.smoother.value = np.ones(
[1, inter_size // tensor_parallel], dtype=np.float32)
elif use_weight_only:
dst = gpt_layer.mlp.proj.weight
processed_torch_weights, torch_weight_scales = torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
numpy_to_torch(t), plugin_weight_only_quant_type)
dst.value = torch_to_numpy(processed_torch_weights)
scales = gpt_layer.mlp.proj.per_channel_scale
scales.value = torch_to_numpy(torch_weight_scales)
else:
gpt_layer.mlp.proj.weight.value = (np.ascontiguousarray(
np.transpose(t, [1, 0])))
if bias:
gpt_layer.mlp.proj.bias.value = fromfile(
dir_path,
'model.layers.' + str(i) + '.mlp.dense_4h_to_h.bias.bin')
if use_int8_kv_cache:
t = fromfile(
dir_path, 'model.layers.' + str(i) +
'.attention.query_key_value.scale_y_quant_orig.bin', [1],
np.float32)
gpt_layer.attention.kv_cache_scaling_factor.value = t
if enable_fp8_qdq:
tensorrt_llm_gpt.layers[
i].mlp.proj.activation_scaling_factor.value = np.array(
[scaling_factors['proj_act'][i]], dtype=fake_fp8_sf_dt)
tensorrt_llm_gpt.layers[
i].mlp.proj.weights_scaling_factor.value = np.array(
[scaling_factors['proj_weights'][i]], dtype=fake_fp8_sf_dt)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
def load_from_hf_gpt(tensorrt_llm_gpt: GPTLMHeadModel,
hf_gpt,
rank=0,
tensor_parallel=1,
dtype='float32',
multi_query_mode=False):
tensorrt_llm.logger.info('Loading weights from HF GPT...')
tik = time.time()
valid_lm_head_weight = False
hidden_size = tensorrt_llm_gpt._hidden_size
head_size = tensorrt_llm_gpt._num_heads // hidden_size
for k, v in hf_gpt.state_dict().items():
torch_dtype = str_dtype_to_torch(dtype)
v = torch_to_numpy(v.to(torch_dtype).detach().cpu())
if 'wte.weight' in k:
tensorrt_llm_gpt.vocab_embedding.weight.value = v
elif 'wpe.weight' in k:
tensorrt_llm_gpt.position_embedding.weight.value = v
elif 'ln_f.weight' in k:
tensorrt_llm_gpt.ln_f.weight.value = v
elif 'ln_f.bias' in k:
tensorrt_llm_gpt.ln_f.bias.value = v
elif 'lm_head.weight' in k:
tensorrt_llm_gpt.lm_head.weight.value = np.ascontiguousarray(
split(v, tensor_parallel, rank))
valid_lm_head_weight = True
else:
layer_idx = extract_layer_idx(k)
if layer_idx is None:
continue
idx = int(layer_idx)
if 'ln_1.weight' in k:
tensorrt_llm_gpt.layers[idx].input_layernorm.weight.value = v
elif 'ln_1.bias' in k:
tensorrt_llm_gpt.layers[idx].input_layernorm.bias.value = v
elif 'attn.c_attn.weight' in k:
if multi_query_mode:
# HF-StarCoder uses torch.nn.Linear
w_qkv = v.reshape(hidden_size + 2 * head_size, 3,
hidden_size)
w_q, w_kv = np.split(w_qkv, [hidden_size, 2 * head_size])
w_q = split(w_q, tensor_parallel, rank)
dst = tensorrt_llm_gpt.layers[idx].attention.qkv.weight
dst.value = np.ascontiguousarray(np.concatenate(w_q, w_kv))
else:
# HF-GPT uses Conv1D instead of Linear
v = v.transpose()
dst = tensorrt_llm_gpt.layers[idx].attention.qkv.weight
dst.value = np.ascontiguousarray(
split(v, tensor_parallel, rank))
elif 'attn.c_attn.bias' in k:
if multi_query_mode:
v.reshape(hidden_size + 2 * head_size, 3)
bias_q, bias_kv = np.split(w_qkv,
[hidden_size, 2 * head_size])
bias_q = split(bias_q, tensor_parallel, rank)
dst = tensorrt_llm_gpt.layers[idx].attention.qkv.bias
dst.value = np.ascontiguousarray(
np.concatenate(bias_q, bias_kv))
else:
dst = tensorrt_llm_gpt.layers[idx].attention.qkv.bias
dst.value = np.ascontiguousarray(
split(v, tensor_parallel, rank))
elif 'attn.q_attn.weight' in k:
# Get the corresponding kv_atten.weight:
# ex: transformer.h.23.attn.kv_attn.weight
u = hf_gpt.state_dict()[k.replace('q_attn', 'kv_attn')]
u = u.to(torch_dtype).cpu().numpy(force=True)
# HF-SantaCoder uses transformer.Conv1D so we transpose to match shape
# In addition, kv_head must be broadcasted to all ranks so split is not applied
v = split(v.transpose(), tensor_parallel, rank) # W_q
u = u.transpose() # W_kv
dst = tensorrt_llm_gpt.layers[idx].attention.qkv.weight
dst.value = np.ascontiguousarray(np.concatenate((v, u)))
elif 'attn.q_attn.bias' in k:
# Get the corresponding kv_atten.bias:
# ex: transformer.h.23.attn.kv_attn.bias
u = hf_gpt.state_dict()[k.replace('q_attn', 'kv_attn')]
u = u.to(torch_dtype).cpu().numpy(force=True)
v = split(v, tensor_parallel, rank)
dst = tensorrt_llm_gpt.layers[idx].attention.qkv.bias
dst.value = np.ascontiguousarray(np.concatenate((v, u)))
elif 'attn.c_proj.weight' in k:
v = v.transpose()
dst = tensorrt_llm_gpt.layers[idx].attention.dense.weight
dst.value = np.ascontiguousarray(
split(v, tensor_parallel, rank, dim=1))
elif 'attn.c_proj.bias' in k:
dst = tensorrt_llm_gpt.layers[idx].attention.dense.bias
dst.value = v
elif 'ln_2.weight' in k:
dst = tensorrt_llm_gpt.layers[idx].post_layernorm.weight
dst.value = v
elif 'ln_2.bias' in k:
dst = tensorrt_llm_gpt.layers[idx].post_layernorm.bias
dst.value = v
elif 'mlp.c_fc.weight' in k:
v = v.transpose()
tensorrt_llm_gpt.layers[
idx].mlp.fc.weight.value = np.ascontiguousarray(
split(v, tensor_parallel, rank))
elif 'mlp.c_fc.bias' in k:
tensorrt_llm_gpt.layers[
idx].mlp.fc.bias.value = np.ascontiguousarray(
split(v, tensor_parallel, rank))
elif 'mlp.c_proj.weight' in k:
v = v.transpose()
tensorrt_llm_gpt.layers[
idx].mlp.proj.weight.value = np.ascontiguousarray(
split(v, tensor_parallel, rank, dim=1))
elif 'mlp.c_proj.bias' in k:
tensorrt_llm_gpt.layers[idx].mlp.proj.bias.value = v
if not valid_lm_head_weight:
# Use wte as lm_head weight to match the load_from_ft implementation.
lm_head_weight = tensorrt_llm_gpt.vocab_embedding.weight.raw_value
vocab_size = hf_gpt.config.vocab_size
if vocab_size % tensor_parallel != 0:
# padding
vocab_size_padded = tensorrt_llm_gpt.lm_head.out_features * tensor_parallel
pad_width = vocab_size_padded - vocab_size
lm_head_weight = np.pad(lm_head_weight, ((0, pad_width), (0, 0)),
'constant',
constant_values=0)
tensorrt_llm_gpt.lm_head.weight.value = np.ascontiguousarray(
split(lm_head_weight, tensor_parallel, rank))
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')