-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar_train.py
136 lines (105 loc) · 4.06 KB
/
cifar_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
"""Trains model on CIFAR-100 and writes checkpoint to disk."""
import os
from tqdm import tqdm
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
from torch.optim.lr_scheduler import MultiStepLR
import cifar
import cifar_util
import util
def train(architecture, batch_size, epochs, dataset_directory, model_directory, data_augmentation, seed=None):
"""Train a PyTorch model to classify CIFAR-100 images.."""
if seed is not None:
print(f'Setting seed: {seed}.')
torch.manual_seed(seed)
if "cuda" in device:
torch.cuda.manual_seed(seed)
# Load dataset
train_loader, test_loader = cifar_util.load_dataset(dataset_directory, data_augmentation, batch_size)
print(f'Loaded CIFAR-100: {len(train_loader.dataset)} train and {len(test_loader.dataset)} test instances.')
# Load model
cudnn.benchmark = True # Should make training should go faster for large models
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_path = os.path.join(model_directory, f'{architecture}')
model = cifar_util.load_model(architecture)
model.to(device)
#Set training parameters
criterion = torch.nn.CrossEntropyLoss()
criterion.to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=0.1,
momentum=0.9, nesterov=True,
weight_decay=5e-4)
scheduler = MultiStepLR(optimizer, milestones=[60, 120, 160], gamma=0.2)
# Initialize log
log_path = util.get_log_path(model_path)
util.create_directory(os.path.dirname(log_path))
csv_logger = util.CSVLogger(
fieldnames=['epoch', 'train_acc', 'test_acc', 'train_loss'],
filepath=log_path,
)
# Train model
print(f'Training {architecture} for {epochs} epochs.')
for epoch in range(epochs):
train_epoch(epoch, model, train_loader, test_loader, criterion,
optimizer, scheduler, csv_logger)
# Save model checkpoint.
checkpoint_path = util.get_checkpoint_path(model_path)
util.create_directory(os.path.dirname(checkpoint_path))
torch.save(model.state_dict(), checkpoint_path)
# Close logger and SummaryWriter.
csv_logger.close()
return model
def test(model, test_loader):
model.eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
correct = 0.
total = 0.
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
with torch.no_grad():
pred = model(images)
pred = torch.max(pred.data, 1)[1]
total += labels.size(0)
correct += (pred == labels).sum().item()
val_acc = correct / total
model.train()
return val_acc
def train_epoch(epoch, model, train_loader, test_loader, criterion,
optimizer, scheduler, logger):
model.train()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
loss_avg = 0.
correct = 0.
class_correct = 0
total = 0.
progress_bar = tqdm(train_loader)
for i, (images, labels) in enumerate(progress_bar):
progress_bar.set_description('Epoch ' + str(epoch))
images = images.to(device)
labels = labels.to(device)
model.zero_grad()
output = model(images)
loss = criterion(output, labels)
loss.backward()
optimizer.step()
loss_avg += loss.item()
# Calculate running average of accuracy
pred = torch.max(output.data, 1)[1]
total += labels.size(0)
correct += (pred == labels.data).sum().item()
accuracy = correct / total
progress_bar.set_postfix(
loss_fn='%.3f' % (loss_avg / (i + 1)),
acc='%.3f' % accuracy)
test_acc = test(model, test_loader)
tqdm.write('test_acc: %.3f' % (test_acc))
scheduler.step()
row = {
'epoch': str(epoch),
'train_acc': str(accuracy),
'test_acc': str(test_acc),
'train_loss': str(loss_avg / (i + 1))
}
logger.writerow(row)