-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprompts.py
471 lines (360 loc) · 22.3 KB
/
prompts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
"""
This file defines prompts for the text completion API that vary the following:
* Response format (MCQ best response, best/worst, rank-order, rank-order top three, short answer, amount)
* Contextualization, e.g., situate the model in a specific role, situation, jurisdiction, etc.
* Justification, e.g., ask the model to explain its answer
Note prompt_001 -> 010 is for Assessment 1 on the "real" Regulation (REG) exam.
Subsequent prompts are meant to be used for Assessment 2 on the 200+ question bank across all areas.
"""
def generate_prompt_001(question_data: dict) -> str:
"""Generate a question prompt to send to GPT-3 API in prompt style 001"""
question_prompt = (
f"""Please answer the following CPA exam question in this format:\n"""
)
# if multiple choice, list the choices
if question_data["question_type"] == "multiple_choice":
question_prompt += f"""Choice: <CHOICE>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
for choice in question_data["choices"]:
question_prompt += f"{choice}. {question_data['choices'][choice]}\n"
question_prompt += f"""\nAnswer:"""
elif question_data["question_type"] == "short_answer":
question_prompt += f"""Answer: <ANSWER>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
question_prompt += f"""\nAnswer:"""
elif question_data["question_type"] == "amount":
question_prompt += f"""Amount: <AMOUNT>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
question_prompt += f"""\nAnswer:"""
else:
raise ValueError(f"Unknown question type {question_data['question_type']}")
return question_prompt
def generate_prompt_002(question_data: dict) -> str:
"""Generate a question prompt to send to GPT-3 API in prompt style 002"""
question_prompt = (
f"""Please answer the following CPA exam question in this format:\n"""
)
# if multiple choice, list the choices
if question_data["question_type"] == "multiple_choice":
question_prompt += f"""Choice: <CHOICE>\nExplanation: <EXPLANATION>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
for choice in question_data["choices"]:
question_prompt += f"{choice}. {question_data['choices'][choice]}\n"
question_prompt += f"""\nAnswer:"""
elif question_data["question_type"] == "short_answer":
question_prompt += f"""Answer: <ANSWER>\nExplanation: <EXPLANATION>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
question_prompt += f"""\nAnswer:"""
elif question_data["question_type"] == "amount":
question_prompt += f"""Amount: <AMOUNT>\nExplanation: <EXPLANATION>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
question_prompt += f"""\nAnswer:"""
else:
raise ValueError(f"Unknown question type {question_data['question_type']}")
return question_prompt
def generate_prompt_003(question_data: dict) -> str:
"""Generate a question prompt to send to GPT-3 API in prompt style 003"""
question_prompt = f"""Imagine you are an accountant in the United States. Please answer the question below in this format:\n"""
# if multiple choice, list the choices
if question_data["question_type"] == "multiple_choice":
question_prompt += f"""Choice: <CHOICE>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
for choice in question_data["choices"]:
question_prompt += f"{choice}. {question_data['choices'][choice]}\n"
question_prompt += f"""\nAnswer:"""
elif question_data["question_type"] == "short_answer":
question_prompt += f"""Answer: <ANSWER>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
question_prompt += f"""\nAnswer:"""
elif question_data["question_type"] == "amount":
question_prompt += f"""Amount: <AMOUNT>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
question_prompt += f"""\nAnswer:"""
else:
raise ValueError(f"Unknown question type {question_data['question_type']}")
return question_prompt
def generate_prompt_004(question_data: dict) -> str:
"""Generate a question prompt to send to GPT-3 API in prompt style 004"""
question_prompt = f"""Imagine you are an accountant in the United States. Please answer the question below in this format:\n"""
# if multiple choice, list the choices
if question_data["question_type"] == "multiple_choice":
question_prompt += f"""Choice: <CHOICE>\nExplanation: <EXPLANATION>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
for choice in question_data["choices"]:
question_prompt += f"{choice}. {question_data['choices'][choice]}\n"
question_prompt += f"""\nAnswer:"""
elif question_data["question_type"] == "short_answer":
question_prompt += f"""Answer: <ANSWER>\nExplanation: <EXPLANATION>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
question_prompt += f"""\nAnswer:"""
elif question_data["question_type"] == "amount":
question_prompt += f"""Amount: <AMOUNT>\nExplanation: <EXPLANATION>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
question_prompt += f"""\nAnswer:"""
else:
raise ValueError(f"Unknown question type {question_data['question_type']}")
return question_prompt
def generate_prompt_005(question_data: dict) -> str:
"""Generate a question prompt to send to GPT-3 API in prompt style 005"""
question_prompt = f"""Imagine you are an accountant in the United States. Please answer the question below in this format:\n"""
# if multiple choice, list the choices
if question_data["question_type"] == "multiple_choice":
question_prompt += f"""Best Choice: <CHOICE>\nWorst Choice: <CHOICE>\nExplanation: <EXPLANATION>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
for choice in question_data["choices"]:
question_prompt += f"{choice}. {question_data['choices'][choice]}\n"
question_prompt += f"""\nAnswer:"""
elif question_data["question_type"] == "short_answer":
question_prompt += f"""Answer: <ANSWER>\nExplanation: <EXPLANATION>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
question_prompt += f"""\nAnswer:"""
elif question_data["question_type"] == "amount":
question_prompt += f"""Amount: <AMOUNT>\nExplanation: <EXPLANATION>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
question_prompt += f"""\nAnswer:"""
else:
raise ValueError(f"Unknown question type {question_data['question_type']}")
return question_prompt
def generate_prompt_006(question_data: dict) -> str:
"""Generate a question prompt to send to GPT-3 API in prompt style 006"""
question_prompt = f"""Imagine you are a tax professional in the United States. Please answer the question below in this format:\n"""
# if multiple choice, list the choices
if question_data["question_type"] == "multiple_choice":
question_prompt += f"""Best Choice: <CHOICE>\nWorst Choice: <CHOICE>\nExplanation: <EXPLANATION>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
for choice in question_data["choices"]:
question_prompt += f"{choice}. {question_data['choices'][choice]}\n"
question_prompt += f"""\nAnswer:"""
elif question_data["question_type"] == "short_answer":
question_prompt += f"""Answer: <ANSWER>\nExplanation: <EXPLANATION>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
question_prompt += f"""\nAnswer:"""
elif question_data["question_type"] == "amount":
question_prompt += f"""Amount: <AMOUNT>\nExplanation: <EXPLANATION>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
question_prompt += f"""\nAnswer:"""
else:
raise ValueError(f"Unknown question type {question_data['question_type']}")
return question_prompt
def generate_prompt_007(question_data: dict) -> str:
"""Generate a question prompt to send to GPT-3 API in prompt style 007"""
question_prompt = f"""Imagine you are a legal professional in the United States. Please answer the question below in this format:\n"""
# if multiple choice, list the choices
if question_data["question_type"] == "multiple_choice":
question_prompt += f"""Best Choice: <CHOICE>\nWorst Choice: <CHOICE>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
for choice in question_data["choices"]:
question_prompt += f"{choice}. {question_data['choices'][choice]}\n"
question_prompt += f"""\nAnswer:"""
elif question_data["question_type"] == "short_answer":
question_prompt += f"""Answer: <ANSWER>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
question_prompt += f"""\nAnswer:"""
elif question_data["question_type"] == "amount":
question_prompt += f"""Amount: <AMOUNT>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
question_prompt += f"""\nAnswer:"""
else:
raise ValueError(f"Unknown question type {question_data['question_type']}")
return question_prompt
def generate_prompt_008(question_data: dict) -> str:
"""Generate a question prompt to send to GPT-3 API in prompt style 007"""
question_prompt = f"""Imagine you are a legal professional in the United States. Please answer the question below in this format:\n"""
# if multiple choice, list the choices
if question_data["question_type"] == "multiple_choice":
question_prompt += f"""Best Choice: <CHOICE>\nWorst Choice: <CHOICE>\nExplanation: <EXPLANATION>\n\n"""
question_prompt += f"""Question: {question_data['question']}\n"""
for choice in question_data["choices"]:
question_prompt += f"{choice}. {question_data['choices'][choice]}\n"
question_prompt += f"""\nAnswer:"""
elif question_data["question_type"] == "short_answer":
question_prompt += f"""Answer: <ANSWER>\nExplanation: <EXPLANATION>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
question_prompt += f"""\nAnswer:"""
elif question_data["question_type"] == "amount":
question_prompt += f"""Amount: <AMOUNT>\nExplanation: <EXPLANATION>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
question_prompt += f"""\nAnswer:"""
else:
raise ValueError(f"Unknown question type {question_data['question_type']}")
return question_prompt
def generate_prompt_009(question_data: dict) -> str:
"""Generate a question prompt to send to GPT-3 API in prompt style 009"""
question_prompt = f"""Imagine you are a tax professional in the United States. Please answer the question below in this format:\n"""
# if multiple choice, list the choices
if question_data["question_type"] == "multiple_choice":
question_prompt += f"""Best Choice: <CHOICE>\nWorst Choice: <CHOICE>\nExplanation: <EXPLANATION>\n\n"""
question_prompt += f"""Question: {question_data['question']}\n"""
for choice in question_data["choices"]:
question_prompt += f"{choice}. {question_data['choices'][choice]}\n"
question_prompt += f"""\nAnswer:"""
elif question_data["question_type"] == "short_answer":
question_prompt += f"""Answer: <ANSWER>\nExplanation: <EXPLANATION>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
question_prompt += f"""\nAnswer:"""
elif question_data["question_type"] == "amount":
question_prompt += f"""Amount: <AMOUNT>\nExplanation: <EXPLANATION>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
question_prompt += f"""\nAnswer:"""
else:
raise ValueError(f"Unknown question type {question_data['question_type']}")
return question_prompt
def generate_prompt_010(question_data: dict) -> str:
"""Generate a question prompt to send to GPT-3 API in prompt style 010"""
question_prompt = f"""Imagine you are an accountant in the United States. Please answer the question below in this format:\n"""
# if multiple choice, list the choices
if question_data["question_type"] == "multiple_choice":
question_prompt += f"""Best Choice: <CHOICE>\nWorst Choice: <CHOICE>\nExplanation: <EXPLANATION>\n\n"""
question_prompt += f"""Question: {question_data['question']}\n"""
for choice in question_data["choices"]:
question_prompt += f"{choice}. {question_data['choices'][choice]}\n"
question_prompt += f"""\nAnswer:"""
elif question_data["question_type"] == "short_answer":
question_prompt += f"""Answer: <ANSWER>\nExplanation: <EXPLANATION>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
question_prompt += f"""\nAnswer:"""
elif question_data["question_type"] == "amount":
question_prompt += f"""Amount: <AMOUNT>\nExplanation: <EXPLANATION>\n\n"""
question_prompt += f"""{question_data['question']}\n"""
question_prompt += f"""\nAnswer:"""
else:
raise ValueError(f"Unknown question type {question_data['question_type']}")
return question_prompt
def generate_prompt_011(question_data: dict) -> str:
"""Generate a question prompt to send to GPT-3 API in prompt style 011"""
question_prompt = f"""Please answer the following CPA exam question in this rank order format:\n"""
# if multiple choice, list the choices
if question_data["question_type"] == "multiple_choice":
question_prompt += f"""First Choice: <LETTER>\nSecond Choice: <LETTER>\nThird Choice: <LETTER>\nExplanation: <EXPLANATION>\n\n"""
question_prompt += f"""Question: {question_data['question']}\n"""
for choice in question_data["choices"]:
question_prompt += f"{choice}. {question_data['choices'][choice]}\n"
question_prompt += "####\n"
else:
raise ValueError(f"Unknown question type {question_data['question_type']}")
return question_prompt
def generate_prompt_012(question_data: dict) -> str:
"""Generate a question prompt to send to GPT-3 API in prompt style 012"""
question_prompt = f"""Imagine you are an accountant in the United States. Please answer the question below in this rank order format:\n"""
# if multiple choice, list the choices
if question_data["question_type"] == "multiple_choice":
question_prompt += f"""First Choice: <LETTER>\nSecond Choice: <LETTER>\nThird Choice: <LETTER>\nExplanation: <EXPLANATION>\n\n"""
question_prompt += f"""Question: {question_data['question']}\n"""
for choice in question_data["choices"]:
question_prompt += f"{choice}. {question_data['choices'][choice]}\n"
question_prompt += "####\n"
else:
raise ValueError(f"Unknown question type {question_data['question_type']}")
return question_prompt
def generate_prompt_013(question_data: dict) -> str:
"""Generate a question prompt to send to GPT-3 API in prompt style 013"""
question_prompt = f"""Imagine you are a tax professional in the United States. Please answer the question below in this rank order format:\n"""
# if multiple choice, list the choices
if question_data["question_type"] == "multiple_choice":
question_prompt += f"""First Choice: <LETTER>\nSecond Choice: <LETTER>\nThird Choice: <LETTER>\nExplanation: <EXPLANATION>\n\n"""
question_prompt += f"""Question: {question_data['question']}\n"""
for choice in question_data["choices"]:
question_prompt += f"{choice}. {question_data['choices'][choice]}\n"
question_prompt += "####\n"
else:
raise ValueError(f"Unknown question type {question_data['question_type']}")
return question_prompt
def generate_prompt_014(question_data: dict) -> str:
"""Generate a question prompt to send to GPT-3 API in prompt style 014"""
question_prompt = f"""Imagine you are a legal professional in the United States. Please answer the question below in this rank order format:\n"""
# if multiple choice, list the choices
if question_data["question_type"] == "multiple_choice":
question_prompt += f"""First Choice: <LETTER>\nSecond Choice: <LETTER>\nThird Choice: <LETTER>\nExplanation: <EXPLANATION>\n\n"""
question_prompt += f"""Question: {question_data['question']}\n"""
for choice in question_data["choices"]:
question_prompt += f"{choice}. {question_data['choices'][choice]}\n"
question_prompt += "####\n"
else:
raise ValueError(f"Unknown question type {question_data['question_type']}")
return question_prompt
def generate_prompt_015(question_data: dict) -> str:
"""Generate a question prompt to send to GPT-3 API in prompt style 015"""
question_prompt = f"""Imagine you are a Big 4 accountant in the United States. Please answer the question below in this rank order format.\n"""
# if multiple choice, list the choices
if question_data["question_type"] == "multiple_choice":
question_prompt += f"""First Choice: <LETTER>\nSecond Choice: <LETTER>\nThird Choice: <LETTER>\nExplanation: <EXPLANATION>\n\n"""
question_prompt += f"""----\nQuestion: {question_data['question']}\n"""
for choice in question_data["choices"]:
question_prompt += f"{choice}. {question_data['choices'][choice]}\n"
question_prompt += "####\n"
else:
raise ValueError(f"Unknown question type {question_data['question_type']}")
return question_prompt
def generate_prompt_016(question_data: dict) -> str:
"""Generate a question prompt to send to GPT-3 API in prompt style 011"""
question_prompt = f"""Imagine you're designing the CPA exam. Rank order the questions from most to least correct in this format:\n"""
# if multiple choice, list the choices
if question_data["question_type"] == "multiple_choice":
question_prompt += f"""---\nFirst Choice: <LETTER>\nSecond Choice: <LETTER>\nThird Choice: <LETTER>\nExplanation: <EXPLANATION>\n---\n"""
question_prompt += f"""Question: {question_data['question']}\n"""
for choice in question_data["choices"]:
question_prompt += f"{choice}. {question_data['choices'][choice]}\n"
question_prompt += "####\n"
else:
raise ValueError(f"Unknown question type {question_data['question_type']}")
return question_prompt
def generate_prompt_017(question_data: dict) -> str:
"""Generate a question prompt to send to GPT-3 API in prompt style 011"""
question_prompt = f"""Imagine you're taking the CPA exam. Please answer the question in this format:\n"""
# if multiple choice, list the choices
if question_data["question_type"] == "multiple_choice":
question_prompt += f"""---\nFirst Choice: <LETTER>\nSecond Choice: <LETTER>\nThird Choice: <LETTER>\nExplanation: <EXPLANATION OF FIRST CHOICE> <REFERENCES OR CITATIONS TO AUTHORITY>\n---\n"""
question_prompt += f"""Question: {question_data['question']}\n"""
for choice in question_data["choices"]:
question_prompt += f"{choice}. {question_data['choices'][choice]}\n"
question_prompt += "####\n"
else:
raise ValueError(f"Unknown question type {question_data['question_type']}")
return question_prompt
def generate_prompt_018(question_data: dict) -> str:
"""Generate a question prompt to send to GPT-3 API in prompt style 011"""
question_prompt = f"""Imagine you're taking the CPA exam. Please answer the question in this format:\n"""
# if multiple choice, list the choices
if question_data["question_type"] == "multiple_choice":
question_prompt += f"""---\nFirst Choice: <LETTER>\nSecond Choice: <LETTER>\nThird Choice: <LETTER>\nExplanation: <EXPLANATION>; <REFERENCES OR CITATIONS TO AUTHORITY>\n---\n"""
question_prompt += f"""Question: {question_data['question']}\n"""
for choice in question_data["choices"]:
question_prompt += f"{choice}. {question_data['choices'][choice]}\n"
question_prompt += "####\n"
else:
raise ValueError(f"Unknown question type {question_data['question_type']}")
return question_prompt
def generate_prompt_019(question_data: dict) -> str:
"""Generate a question prompt to send to GPT-3 API in prompt style 011"""
question_prompt = f"""Imagine you're taking the CPA exam. Please answer the question using the format below.\n"""
question_prompt += f"""Use high-quality references or citations to legal or regulatory authorities or accounting standards to choose the best answer.\n"""
# if multiple choice, list the choices
if question_data["question_type"] == "multiple_choice":
question_prompt += f"""---\nFirst Choice: <LETTER>\nSecond Choice: <LETTER>\nThird Choice: <LETTER>\nExplanation: <EXPLANATION>"""
question_prompt += (
f"References: <REFERENCES OR CITATIONS TO AUTHORITY>\n---\n" ""
)
question_prompt += f"""Question: {question_data['question']}\n"""
for choice in question_data["choices"]:
question_prompt += f"{choice}. {question_data['choices'][choice]}\n"
question_prompt += "####\n"
else:
raise ValueError(f"Unknown question type {question_data['question_type']}")
return question_prompt
def generate_prompt_020(question_data: dict) -> str:
"""Generate a question prompt to send to GPT-3 API in prompt style 011"""
question_prompt = (
f"""Please answer the CPA exam question below using this format:\n"""
)
# if multiple choice, list the choices
if question_data["question_type"] == "multiple_choice":
question_prompt += f"""---\nFirst Choice: <LETTER>\nSecond Choice: <LETTER>\nThird Choice: <LETTER>\n"""
question_prompt += f"""Explanation: <EXPLAIN WHY YOUR FIRST CHOICE IS MOST LIKELY AND OTHERS CHOICES ARE LESS LIKELY OR INCORRECT>\n"""
question_prompt += f"""References: <REFERENCES OR CITATIONS TO AUTHORITY LIKE US Code, CFR, AICPA material, FASB Standards, or common law>\n---\n"""
question_prompt += f"""Question: {question_data['question']}\n"""
for choice in question_data["choices"]:
question_prompt += f"{choice}. {question_data['choices'][choice]}\n"
question_prompt += "####\n"
else:
raise ValueError(f"Unknown question type {question_data['question_type']}")
return question_prompt