-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_gamma_spectrum.py
202 lines (181 loc) · 7.99 KB
/
plot_gamma_spectrum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import sys
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
import mplcursors
# energy table [keV]
# line: TH232 RA226 U235/8 AC227 Others
U235_1 = 143.8
CE141 = 145.4
U235_2 = 185.7
RA226 = 186.2
LU176_1 = 202.0
AC228_1 = 209.3
TH227 = 236.0
PB212 = 238.6
SE75_1 = 264.7
RA223 = 269.5
TI208_1 = 277.4
SE75_2 = 279.5
PB214_1 = 295.2
LU176_2 = 307.0
AC228_2 = 338.3
PB214_2 = 351.9
BA133 = 356.0
CS134_1 = 569.3
TI208_2 = 583.2
CS134_2 = 604.7
BI214_1 = 609.3
CS137 = 661.7
NB95 = 765.8
BI214_2 = 768.0
CS134_3 = 795.9
MN54 = 834.9
TI208_3 = 860.5
AC228_3 = 911.2
AC228_4 = 969.0
BI214_3 = 1120.3
CO60_1 = 1173.2
BI214_4 = 1238.0
CO60_2 = 1332.5
K40 = 1460.8
BI214_5 = 1764.5
# channel calibration (ADC channel)
channel_calibration_x0 = 90
channel_calibration_cs137 = 1302
channel_calibration_k40 = 2880
# 2 factors (for 2 lines) because of slight non-linearity (1 kink at CS137)
channel_calibration_factor_cs137_1 = CS137 / (channel_calibration_cs137 - channel_calibration_x0)
channel_calibration_factor_cs137_2 = (K40 - CS137) / (channel_calibration_k40 - channel_calibration_cs137)
# x axis max visible range
xaxis_max_kev = 1800
def lowPassZeroPhase(input, output, smoothing):
temp = [0 for _ in range(len(input))]
in_len = len(input)
value = input[0]
for i in range(1, in_len):
currentValue = input[i]
value += (currentValue - value) / smoothing
temp[i] = value
value = input[in_len - 1]
for i in range(1, in_len):
currentValue = input[in_len - 1 - i]
value += (currentValue - value) / smoothing
output[in_len - 1 - i] = (temp[in_len - 1 - i] + value) / 2.0
dataframe_1 = pd.read_json(sys.argv[1])
x_data = list(dataframe_1.index.values)
# scale x data values (1 kink at CS137)
x_offset = 0
for i in range(0, channel_calibration_cs137):
x_data[i] = x_offset + (x_data[i] - channel_calibration_x0) * channel_calibration_factor_cs137_1
x_offset = (x_data[channel_calibration_cs137] - channel_calibration_x0) * channel_calibration_factor_cs137_1
for i in range(channel_calibration_cs137, len(x_data)):
x_data[i] = x_offset + (x_data[i] - channel_calibration_cs137) * channel_calibration_factor_cs137_2
time_1 = list(dataframe_1.time.values)[0]
minutes_1 = list(dataframe_1.minutes.values)[0]
cpm_1 = list(dataframe_1.avr_cpm.values)[0]
events_1 = list(dataframe_1.events.values)[0]
y_data_1 = list(dataframe_1.data.values)
y_datafilt_1 = [0 for _ in range(len(x_data))]
lowPassZeroPhase(y_data_1, y_datafilt_1, 10.0)
for i in range(0, len(x_data)):
y_data_1[i] = y_data_1[i] / minutes_1
y_datafilt_1[i] = y_datafilt_1[i] / minutes_1
mpl.rcParams['toolbar'] = 'None'
fig = plt.figure()
fig.canvas.manager.set_window_title('Gamma Spectrum: ' + sys.argv[1])
major_ticks = list(range(0, xaxis_max_kev, 500))
minor_ticks = list(range(0, xaxis_max_kev, 100))
ax1 = fig.add_subplot(111)
ax1.set(title='time elapsed: ' + time_1 + ' - total events: ' + str(events_1) + ' - average cpm: ' + str(cpm_1) + '\n\n\n')
ax1.set_xticks(major_ticks)
ax1.set_xticks(minor_ticks, minor=True)
ax1.grid(which='minor', alpha=0.2)
ax1.grid(which='major', alpha=0.5)
ax1.set_yscale("log", nonpositive='clip')
ax1.set_xlim(100, xaxis_max_kev)
ax1.set_ylim(0.001, 2)
ax1.set_xlabel("energy [keV]")
ax1.set_ylabel("cpm")
ax1.plot(x_data, y_data_1, lw=1, label="Raw Radiation")
ax1.legend(loc="upper right")
ax1.plot(x_data, y_datafilt_1, alpha=0.8, lw=1, label="Filtered Radiation")
ax1.legend(loc="upper right")
plt.axvline(x=U235_1, color='b', linestyle='--')
plt.text(U235_1, 2.4,'U235', color='b', fontsize=6)
plt.axvline(x=U235_2, color='b', linestyle='--')
plt.text(U235_2, 2.4,'U235', color='b', fontsize=6)
plt.axvline(x=TH227, color='g', linestyle='--')
plt.text(TH227, 2.4,'TH227', color='g', fontsize=6)
plt.axvline(x=RA223, color='g', linestyle='--')
plt.text(RA223, 2.4,'RA223', color='g', fontsize=6)
plt.axvline(x=AC228_1, color='#ff8000', linestyle='--')
plt.text(AC228_1, 2.8,'AC228', color='#ff8000', fontsize=6)
plt.axvline(x=PB212, color='#ff8000', linestyle='--')
plt.text(PB212, 2.8,'PB212', color='#ff8000', fontsize=6)
plt.axvline(x=TI208_1, color='#ff8000', linestyle='--')
plt.text(TI208_1, 2.8,'TI208', color='#ff8000', fontsize=6)
plt.axvline(x=AC228_2, color='#ff8000', linestyle='--')
plt.text(AC228_2, 2.8,'AC228', color='#ff8000', fontsize=6)
plt.axvline(x=TI208_2, color='#ff8000', linestyle='--')
plt.text(TI208_2, 2.8,'TI208', color='#ff8000', fontsize=6)
plt.axvline(x=TI208_3, color='#ff8000', linestyle='--')
plt.text(TI208_3, 2.8,'TI208', color='#ff8000', fontsize=6)
plt.axvline(x=AC228_3, color='#ff8000', linestyle='--')
plt.text(AC228_3, 2.8,'AC228', color='#ff8000', fontsize=6)
plt.axvline(x=AC228_4, color='#ff8000', linestyle='--')
plt.text(AC228_4, 2.8,'AC228', color='#ff8000', fontsize=6)
plt.axvline(x=RA226, color='#ff00ff', linestyle='--')
plt.text(RA226, 3.2,'RA226', color='#ff00ff', fontsize=6)
plt.axvline(x=PB214_1, color='#ff00ff', linestyle='--')
plt.text(PB214_1, 3.2,'PB214', color='#ff00ff', fontsize=6)
plt.axvline(x=PB214_2, color='#ff00ff', linestyle='--')
plt.text(PB214_2, 3.2,'PB214', color='#ff00ff', fontsize=6)
plt.axvline(x=BI214_1, color='#ff00ff', linestyle='--')
plt.text(BI214_1, 3.2,'BI214', color='#ff00ff', fontsize=6)
plt.axvline(x=BI214_2, color='#ff00ff', linestyle='--')
plt.text(BI214_2, 3.2,'BI214', color='#ff00ff', fontsize=6)
plt.axvline(x=BI214_3, color='#ff00ff', linestyle='--')
plt.text(BI214_3, 3.2,'BI214', color='#ff00ff', fontsize=6)
plt.axvline(x=BI214_4, color='#ff00ff', linestyle='--')
plt.text(BI214_4, 3.2,'BI214', color='#ff00ff', fontsize=6)
plt.axvline(x=BI214_5, color='#ff00ff', linestyle='--')
plt.text(BI214_5, 3.2,'BI214', color='#ff00ff', fontsize=6)
plt.axvline(x=CE141, color='r', linestyle='--')
plt.text(CE141, 2.1,'CE141', color='r', fontsize=6)
plt.axvline(x=LU176_1, color='r', linestyle='--')
plt.text(LU176_1, 2.1,'LU176', color='r', fontsize=6)
plt.axvline(x=SE75_1, color='r', linestyle='--')
plt.text(SE75_1, 2.1,'SE75', color='r', fontsize=6)
plt.axvline(x=SE75_2, color='r', linestyle='--')
plt.text(SE75_2, 2.1,'SE75', color='r', fontsize=6)
plt.axvline(x=LU176_2, color='r', linestyle='--')
plt.text(LU176_2, 2.1,'LU176', color='r', fontsize=6)
plt.axvline(x=BA133, color='r', linestyle='--')
plt.text(BA133, 2.1,'BA133', color='r', fontsize=6)
plt.axvline(x=CS134_1, color='r', linestyle='--')
plt.text(CS134_1, 2.1,'CS134', color='r', fontsize=6)
plt.axvline(x=CS134_2, color='r', linestyle='--')
plt.text(CS134_2, 2.1,'CS134', color='r', fontsize=6)
plt.axvline(x=CS137, color='r', linestyle='--')
plt.text(CS137, 2.1,'CS137', color='r', fontsize=6)
plt.axvline(x=NB95, color='r', linestyle='--')
plt.text(NB95, 2.1,'NB95', color='r', fontsize=6)
plt.axvline(x=CS134_3, color='r', linestyle='--')
plt.text(CS134_3, 2.1,'CS134', color='r', fontsize=6)
plt.axvline(x=MN54, color='r', linestyle='--')
plt.text(MN54, 2.1,'MN54', color='r', fontsize=6)
plt.axvline(x=CO60_1, color='r', linestyle='--')
plt.text(CO60_1, 2.1,'CO60', color='r', fontsize=6)
plt.axvline(x=CO60_2, color='r', linestyle='--')
plt.text(CO60_2, 2.1,'CO60', color='r', fontsize=6)
plt.axvline(x=K40, color='r', linestyle='--')
plt.text(K40, 2.1,'K40', color='r', fontsize=6)
cursor = mplcursors.cursor(hover=True)
@cursor.connect("add")
def on_add(sel):
energy = sel.target[0]
cpm = sel.target[1]
ann = sel.annotation
ann.set_text('Energy: {:.1f} keV\nCpm: {:.5f}'.format(energy, cpm))
plt.show()