-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathstandalone.cpp
749 lines (652 loc) · 26.5 KB
/
standalone.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
#include <iostream>
#include <cmath>
#include <chrono>
#include <vector>
#include <iomanip>
#include <complex>
#include <array>
#include <fstream>
#include <sstream>
#pragma comment(linker, "/STACK:20000000") // avoid stack overflow
// make these larger for TT
const int N_DEGREE = 16;
const int N_POLY = 128;
const int N_MAT = N_DEGREE + 1;
int perf_count = 0;
int cnt = 0;
class UnivariatePolynomial
{
public:
UnivariatePolynomial(const std::vector<double> &c) : size(c.size())
{
for (int i = 0; i < c.size(); i++)
coeffs[i] = c[i];
}
explicit UnivariatePolynomial(int s) : size(s)
{
for (int i = 0; i < s; i++)
coeffs[i] = 0;
}
UnivariatePolynomial(int s, double c) : size(s)
{
for (int i = 0; i < s; i++)
coeffs[i] = c;
}
std::string toScientificNotationWithPrecision(double value, int precision) const
{
std::ostringstream oss;
oss << std::scientific << std::setprecision(precision) << value;
return oss.str();
}
std::string toString() const
{
std::string result;
size_t nonzero_count = 0;
for (size_t i = 0; i < size; ++i)
{
double coeff = coeffs[i];
result += toScientificNotationWithPrecision(coeff, 6);
result += ", ";
}
if (!result.empty())
{
result.pop_back();
result.pop_back();
result.pop_back();
}
return result;
}
void print() const
{
for (size_t i = 0; i < size; ++i)
{
double coeff = coeffs[i];
if (coeff) {
std::cout << coeff << ", ";
}
}
}
void printCoefficientsMatrix() const
{
size_t cols = size;
std::cout << "Coefficients Matrix:" << std::endl;
std::cout << "+";
for (size_t j = 0; j < cols; ++j)
std::cout << std::setw(12) << "+";
std::cout << std::endl;
std::cout << "|";
for (size_t j = 0; j < cols; ++j)
std::cout << std::setw(12) << coeffs[j];
std::cout << "|" << std::endl;
std::cout << "+";
for (size_t j = 0; j < cols; ++j)
std::cout << std::setw(12) << "+";
std::cout << std::endl;
}
UnivariatePolynomial operator+(const UnivariatePolynomial &other) const
{
size_t max_cols = std::max(size, other.size);
double padded_coeffs_this[N_POLY];
double padded_coeffs_other[N_POLY];
for (size_t j = 0; j < max_cols; ++j)
padded_coeffs_this[j] = 0,
padded_coeffs_other[j] = 0;
for (size_t j = 0; j < size; ++j)
padded_coeffs_this[j] = coeffs[j];
for (size_t j = 0; j < other.size; ++j)
padded_coeffs_other[j] = other.coeffs[j];
UnivariatePolynomial sum(max_cols);
for (size_t j = 0; j < max_cols; ++j)
sum.coeffs[j] = padded_coeffs_this[j] + padded_coeffs_other[j];
return sum;
}
UnivariatePolynomial operator*(const UnivariatePolynomial &other) const
{
size_t result_size = size + other.size - 1;
UnivariatePolynomial result(result_size);
for (size_t i = 0; i < size; ++i)
for (size_t j = 0; j < other.size; ++j)
{
if (i + j >= N_POLY)
break;
result.coeffs[i + j] += coeffs[i] * other.coeffs[j];
cnt++;
}
return result;
}
UnivariatePolynomial operator*(double other) const
{
UnivariatePolynomial sum(size);
for (size_t j = 0; j < size; ++j)
sum.coeffs[j] = coeffs[j] * other;
return sum;
}
UnivariatePolynomial operator-(const UnivariatePolynomial &other) const
{
return *this + (other * UnivariatePolynomial(1, -1));
}
void resize(size_t max_cols)
{
for (int i = size; i < max_cols; i++)
coeffs[i] = 0;
size = max_cols;
}
double evaluateAtU(double x) const
{
double result = 0.0;
for (int i = size - 1; i >= 0; --i)
result = result * x + coeffs[i];
return result;
}
std::vector<double> getCoeffs() const
{
std::vector<double> v(size);
for (int i = 0; i < size; i++)
v[i] = coeffs[i];
return v;
}
void normalize()
{
double mc = 1e-99;
for (int i = -2 + size; i >= 1; i--)
mc = std::max(mc, coeffs[i]);
for (int i = -2 + size; i >= 0; i--)
coeffs[i] /= mc;
}
public:
int size = 0; // size means the length = degree + 1
double coeffs[N_POLY] = {};
};
class BivariatePolynomial
{
public:
BivariatePolynomial(const std::vector<std::vector<double>> &c) : size(c.size())
{
for (int i = 0; i < size; i++)
for (int j = 0; j < size; j++)
coeffs[i][j] = c[i][j];
}
explicit BivariatePolynomial(int sz) : size(sz)
{
}
BivariatePolynomial(int sz, double f) : size(sz)
{
coeffs[0][0] = f;
}
BivariatePolynomial() : size(0)
{
}
std::string toScientificNotationWithPrecision(double value, int precision) const
{
std::ostringstream oss;
oss << std::scientific << std::setprecision(precision) << value;
return oss.str();
}
std::string toString() const
{
std::string result;
for (size_t i = 0; i < size; ++i)
for (size_t j = 0; j < size; ++j)
{
double coeff = coeffs[i][j];
if (coeff != 0)
{
result += toScientificNotationWithPrecision(coeff, 8);
if (i)
result += "*u.^" + std::to_string(i);
if (j)
result += "*v.^" + std::to_string(j);
result += " + ";
}
}
if (!result.empty())
{
result.pop_back();
result.pop_back();
result.pop_back();
}
return result;
}
void printCoefficientsMatrix() const
{
size_t rows = size;
size_t cols = size;
std::cout << "Coefficients Matrix:" << std::endl;
std::cout << "+";
for (size_t j = 0; j < cols; ++j)
std::cout << std::setw(12) << "+";
std::cout << std::endl;
for (size_t i = 0; i < rows; ++i)
{
std::cout << "|";
for (size_t j = 0; j < cols; ++j)
std::cout << std::setw(12) << coeffs[i][j];
std::cout << "|" << std::endl;
}
std::cout << "+";
for (size_t j = 0; j < cols; ++j)
std::cout << std::setw(12) << "+";
std::cout << std::endl;
}
BivariatePolynomial operator+(const BivariatePolynomial &other) const
{
BivariatePolynomial sum(std::max(size, other.size));
for (size_t i = 0; i < sum.size; ++i)
for (size_t j = 0; j < sum.size; ++j)
sum.coeffs[i][j] = coeffs[i][j] + other.coeffs[i][j];
return sum;
}
BivariatePolynomial operator*(const BivariatePolynomial &other) const
{
// ! we assume it is an upper triangle
BivariatePolynomial result(std::min(N_MAT, size + other.size - 1));
for (size_t i = 0; i < size; ++i)
{
for (size_t k = 0; k < other.size && i + k < N_MAT; ++k)
{
for (size_t j = 0; i + j < size; ++j)
{
for (size_t l = 0; k + l < other.size && j + l < N_MAT; ++l)
{
result.coeffs[i + k][j + l] += coeffs[i][j] * other.coeffs[k][l];
}
}
}
}
return result;
}
BivariatePolynomial scalarMul(double other) const
{
BivariatePolynomial result(std::max(size, 1));
for (size_t i = 0; i < size; ++i)
for (size_t j = 0; j < size; ++j)
result.coeffs[i][j] = coeffs[i][j] * other;
return result;
}
// todo: optimize
BivariatePolynomial operator-(const BivariatePolynomial &other) const
{
return *this + (other.scalarMul(-1));
}
BivariatePolynomial operator-(double other) const
{
return *this + (BivariatePolynomial(1, other).scalarMul(-1));
}
void resize(size_t max_rows, size_t max_cols)
{
for (int i = 0; i < size; i++)
for (int j = 0; j < size; j++)
if (i >= max_rows || j >= max_rows)
coeffs[i][j] = 0;
size = max_rows;
}
UnivariatePolynomial evaluateAtU(double value) const
{
std::vector<double> univariate_coeffs(size, 0);
double pw = 1; // = value^i
for (size_t i = 0; i < size; ++i)
{
for (size_t j = 0; j < size; ++j)
univariate_coeffs[j] += coeffs[i][j] * pw;
pw *= value;
}
return UnivariatePolynomial(univariate_coeffs);
}
UnivariatePolynomial evaluateAtV(double value) const
{
std::vector<double> univariate_coeffs(size, 0);
for (size_t i = 0; i < size; ++i)
{
double pw = 1;
for (size_t j = 0; j < size; ++j)
{
univariate_coeffs[i] += coeffs[i][j] * pw;
pw *= value;
}
}
return UnivariatePolynomial(univariate_coeffs);
}
std::vector<UnivariatePolynomial> toUnivariatePolynomials() const
{
// ! assume it is an upper triangle
std::vector<UnivariatePolynomial> univariatePolys;
int n = size;
for (int i = 0; i < n; ++i)
{
std::vector<double> coefficients(n - i);
for (int j = 0; j < n - i; ++j)
coefficients[j] = coeffs[i][j];
univariatePolys.push_back(UnivariatePolynomial(coefficients));
}
return univariatePolys;
}
public:
double coeffs[N_MAT + 1][N_MAT + 1] = {};
int size; // size = length = maxdeg + 1
};
typedef std::vector<std::vector<UnivariatePolynomial>> UnivariatePolynomialMatrix;
void printUnivariatePolynomial(const UnivariatePolynomial &poly)
{
poly.print();
}
void printUnivariatePolynomialMatrix(const UnivariatePolynomialMatrix &matrix)
{
int n = matrix.size();
for (int i = 0; i < n; i++) {
for (int j = i; j < n; j++) {
matrix[i][j].print();
}
}
std::cout << std::endl;
}
typedef BivariatePolynomial BVP;
struct BVP3
{
BivariatePolynomial bvp[3];
BVP3(const BivariatePolynomial &x, const BivariatePolynomial &y, const BivariatePolynomial &z) : bvp{x, y, z}
{
}
BVP3 operator+(const BVP3 &rhs) const
{
return {bvp[0] + rhs.bvp[0], bvp[1] + rhs.bvp[1], bvp[2] + rhs.bvp[2]};
}
BVP3 operator-(const BVP3 &rhs) const
{
return {bvp[0] - rhs.bvp[0], bvp[1] - rhs.bvp[1], bvp[2] - rhs.bvp[2]};
}
BVP3 operator*(const BVP3 &rhs) const
{ // element-wise product
return {bvp[0] * rhs.bvp[0], bvp[1] * rhs.bvp[1], bvp[2] * rhs.bvp[2]};
}
BVP3 operator+(const BivariatePolynomial &rhs) const
{
return {bvp[0] + rhs, bvp[1] + rhs, bvp[2] + rhs};
}
BVP3 operator-(const BivariatePolynomial &rhs) const
{
return {bvp[0] - rhs, bvp[1] - rhs, bvp[2] - rhs};
}
BVP3 operator*(const BivariatePolynomial &rhs) const
{
return {bvp[0] * rhs, bvp[1] * rhs, bvp[2] * rhs};
}
BivariatePolynomial dot(const BVP3 &rhs) const
{ // dot product
return bvp[0] * rhs.bvp[0] + bvp[1] * rhs.bvp[1] + bvp[2] * rhs.bvp[2];
}
BVP3 cross(const BVP3 &rhs) const
{ // cross product
return {bvp[1] * rhs.bvp[2] - bvp[2] * rhs.bvp[1], bvp[2] * rhs.bvp[0] - bvp[0] * rhs.bvp[2], bvp[0] * rhs.bvp[1] - bvp[1] * rhs.bvp[0]};
}
};
UnivariatePolynomialMatrix bezout_matrix(const std::vector<UnivariatePolynomial> &a, const std::vector<UnivariatePolynomial> &b)
{
size_t n = a.size() - 1;
UnivariatePolynomialMatrix f(n, std::vector<UnivariatePolynomial>(n, UnivariatePolynomial({0})));
for (size_t i = 0; i < n; ++i)
for (size_t j = i; j < n; ++j)
f[i][j] = a[i] * b[j + 1] - b[i] * a[j + 1];
for (size_t i = 1; i < n - 1; ++i)
for (size_t j = i; j < n - 1; ++j)
f[i][j] = f[i][j] + f[i - 1][j + 1];
for (size_t i = 0; i < n; ++i)
for (size_t j = 0; j < i; ++j)
f[i][j] = f[j][i];
return f;
}
int main()
{
//////////////////////////////////////////////////
// Choose a test case (please select one)
// Test case for R #1
// double ans_alpha = 0.109817;
// double ans_u = 0.409893;
// std::vector<double> pD_ = {0, 2.6, 1.1};
// std::vector<double> pL_ = {1, 2.5, 2};
// std::vector<double> p10_ = {-1.07752, 0.073294, -1.0518};
// std::vector<double> n10_ = {-0.111471, 0.096233, 0.989097};
// std::vector<double> p11_ = {0.030847, -0.002331, 0.00513101};
// std::vector<double> n11_ = {0.453673, 0.306021, -1.83827};
// std::vector<double> p12_ = {-1.07288e-06, 0.03624, -0.0257159};
// std::vector<double> n12_ = {0.13615, 0.015406, 0.004345};
// std::vector<double> p20_ = {0, 1, 0};
// std::vector<double> n20_ = {0, 1, 0};
// std::vector<double> p21_ = {0, 1, 0};
// std::vector<double> n21_ = {0, 1, 0};
// std::vector<double> p22_ = {0, 1, 0};
// std::vector<double> n22_ = {0, 1, 0};
// Test case for R #2
// double ans_alpha = 0.671860456466675;
// double ans_u = 0.083107322454453;
// std::vector<double> pD_ = {0.0, 0.0, 10.0};
// std::vector<double> pL_ = {0.0, 0.0, 9.999};
// std::vector<double> p10_ = {0.156250000000000, -0.515625000000000, 0.000400904595153};
// std::vector<double> n10_ = {-0.033636242151260, 0.020228719338775, 0.999229431152344};
// std::vector<double> p11_ = {0.007812500000000, 0.007812500000000, -0.000963313155808};
// std::vector<double> n11_ = {0.126469522714615, 0.127072423696518, -0.014503896236420};
// std::vector<double> p12_ = {0.007812500000000, 0.000000000000000, 0.000249680160778};
// std::vector<double> n12_ = {0.029931440949440, 0.084055192768574, -0.004688739776611};
// std::vector<double> p20_ = {0, 1, 0};
// std::vector<double> n20_ = {0, 1, 0};
// std::vector<double> p21_ = {0, 1, 0};
// std::vector<double> n21_ = {0, 1, 0};
// std::vector<double> p22_ = {0, 1, 0};
// std::vector<double> n22_ = {0, 1, 0};
// Test case for T #1
// double ans_alpha = 0.310013;
// double ans_u = 0.301126;
// std::vector<double> pD_ = {0, -2.6, -1.1};
// std::vector<double> pL_ = {1, 2.5, 2};
// std::vector<double> p10_ = {-0.933849, 0.091093, -1.07752};
// std::vector<double> n10_ = {-0.80496, 0.081929, 0.587645};
// std::vector<double> p11_ = {-0.025211, -0.021542, 0.0107059};
// std::vector<double> n11_ = {-0.048272, 0.020128, -1.09909};
// std::vector<double> p12_ = {-0.023945, -0.022294, 0.011972};
// std::vector<double> n12_ = {1.71536, 0.1286, -0.943807};
// std::vector<double> p20_ = {0, 1, 0};
// std::vector<double> n20_ = {0, 1, 0};
// std::vector<double> p21_ = {0, 1, 0};
// std::vector<double> n21_ = {0, 1, 0};
// std::vector<double> p22_ = {0, 1, 0};
// std::vector<double> n22_ = {0, 1, 0};
// Test case for RR #1
double ans_alpha = 0.597033858299255;
double ans_u = 0.211711958050728;
std::vector<double> pD_ = {0, 2.6, 1.1};
std::vector<double> pL_ = {0.01, 5, 0.01};
std::vector<double> p10_ = {0.370296001434326, 0.626675009727478, 0.895971000194550};
std::vector<double> n10_ = {0.788752138614655, 0.535826086997986, -0.301265031099319};
std::vector<double> p11_ = {0.143369972705841, -0.233456015586853, -0.039860010147095};
std::vector<double> n11_ = {0.019750535488129, -0.004185259342194, 0.048913121223450};
std::vector<double> p12_ = {-0.027851998806000, 0.006330966949463, -0.039861023426056};
std::vector<double> n12_ = {-1.463354110717773, 0.106234848499298, -0.062973946332932};
std::vector<double> p20_ = {0.529286026954651, 0.369679987430573, 0.863919973373413};
std::vector<double> n20_ = {0.811285793781281, 0.574435889720917, 0.108805976808071};
std::vector<double> p21_ = {0.155601978302002, 0.167689025402069, -0.085048973560333};
std::vector<double> n21_ = {-1.449134111404419, 0.165311336517334, 0.105492092669010};
std::vector<double> p22_ = {0.061486959457397, 0.113540023565292, -0.136707961559296};
std::vector<double> n22_ = {-1.402412891387939, 0.210225224494934, 0.077945031225681};
// Test case for RR #2
// double ans_alpha = 0.62987;
// double ans_u = 0.00862558;
// std::vector<double> pD_ = {1, 2, 1};
// std::vector<double> pL_ = {0, 1, 0};
// std::vector<double> p10_ = {0.511367, 0.472912, -0.172372};
// std::vector<double> n10_ = {-0.709005, 0.658665, -0.251938};
// std::vector<double> p11_ = {-0.168923, -0.132192, 0.172372};
// std::vector<double> n11_ = {-0.0380941, -0.0756929, 0.571292};
// std::vector<double> p12_ = {0.00229895, 0.087235, 0.172372};
// std::vector<double> n12_ = {-0.00747013, -0.0468389, 0.587099};
// std::vector<double> p20_ = {0.277168005704880, 0.386878013610840, -0.289471000432968};
// std::vector<double> n20_ = {0.483563005924225, 0.717585027217865, 0.501236975193024};
// std::vector<double> p21_ = {0.031031996011734, -0.018148005008698, 0.015516012907028};
// std::vector<double> n21_ = {-0.608214974403381, -0.204608201980591, 0.348066747188568};
// std::vector<double> p22_ = {0.065275996923447, 0.103565990924835, -0.052973002195358};
// std::vector<double> n22_ = {-1.293977975845337, -0.135358095169067, -0.566347956657410};
// // Test case for TT #1 (eta1/eta2=eta1/eta0=1.5041833)
// double ans_alpha = 0.048989;
// double ans_u = 0.405843;
// std::vector<double> pD_ = {0, 3, 3};
// std::vector<double> pL_ = {1, 0, -2};
// std::vector<double> p10_ = {-0.47951, 0.188409, 0.394961};
// std::vector<double> n10_ = {-0.558866, -0.062897, 0.826869};
// std::vector<double> p11_ = {-0.011621, 0.134577, 0.035201};
// std::vector<double> n11_ = {0.321876, -0.051988, 0.137826};
// std::vector<double> p12_ = {-0.030836, 0.114573, 0.010995};
// std::vector<double> n12_ = {-0.243505, -0.2679, -0.330106};
// std::vector<double> p20_ = {-0.271035999059677, 0.079536996781826, -0.272576004266739};
// std::vector<double> n20_ = {-0.126439988613129, -0.461173951625824, -0.878254890441895};
// std::vector<double> p21_ = {-0.071738988161087, -0.049747996032238, 0.070618003606796};
// std::vector<double> n21_ = {-0.031262993812561, -0.454199910163879, 0.507821917533875};
// std::vector<double> p22_ = {-0.068792998790741, 0.043978005647659, 0.070188999176025};
// std::vector<double> n22_ = {-0.606584846973419, 0.437246948480606, 0.198474049568176};
//////////////////////////////////////////////////
// Common definations
double ans_v = 1 - ans_alpha - ans_u;
// BVP(1, x) means BVP({{x}})
BVP3 pD = {BVP(1, pD_[0]), BVP(1, pD_[1]), BVP(1, pD_[2])};
BVP3 pL = {BVP(1, pL_[0]), BVP(1, pL_[1]), BVP(1, pL_[2])};
BVP3 p10 = {BVP(1, p10_[0]), BVP(1, p10_[1]), BVP(1, p10_[2])};
BVP3 p11 = {BVP(1, p11_[0]), BVP(1, p11_[1]), BVP(1, p11_[2])};
BVP3 p12 = {BVP(1, p12_[0]), BVP(1, p12_[1]), BVP(1, p12_[2])};
BVP3 n10 = {BVP(1, n10_[0]), BVP(1, n10_[1]), BVP(1, n10_[2])};
BVP3 n11 = {BVP(1, n11_[0]), BVP(1, n11_[1]), BVP(1, n11_[2])};
BVP3 n12 = {BVP(1, n12_[0]), BVP(1, n12_[1]), BVP(1, n12_[2])};
BVP3 p20 = {BVP(1, p20_[0]), BVP(1, p20_[1]), BVP(1, p20_[2])};
BVP3 p21 = {BVP(1, p21_[0]), BVP(1, p21_[1]), BVP(1, p21_[2])};
BVP3 p22 = {BVP(1, p22_[0]), BVP(1, p22_[1]), BVP(1, p22_[2])};
BVP3 n20 = {BVP(1, n20_[0]), BVP(1, n20_[1]), BVP(1, n20_[2])};
BVP3 n21 = {BVP(1, n21_[0]), BVP(1, n21_[1]), BVP(1, n21_[2])};
BVP3 n22 = {BVP(1, n22_[0]), BVP(1, n22_[1]), BVP(1, n22_[2])};
BVP u1({{0, 0}, {1, 0}});
BVP v1({{0, 1}, {0, 0}});
BVP3 xD = pD;
BVP3 xL = pL;
BVP3 x1 = p10 + p11 * u1 + p12 * v1;
BVP3 n1_scaled = n10 + n11 * u1 + n12 * v1;
// The two polynomials we want to generate. Don't care the name.
BVP Czy;
BVP Cxz;
BVP u2_scaled;
BVP v2_scaled;
BVP kappa2;
//////////////////////////////////////////////////
// Polynomial generation (please select one)
///////////////////////////////////
// R: 5 degree form
// BVP3 d0 = x1 - xD;
// BVP3 d1 = xL - x1;
// BVP d0_norm2 = d0.dot(d0);
// BVP d1_norm2 = d1.dot(d1);
// BVP3 c0 = d0.cross(n1_scaled);
// BVP3 c1 = d1.cross(n1_scaled);
// BVP3 c = c0 * c0 * d1_norm2 - c1 * c1 * d0_norm2;
// Czy = c.bvp[0];
// Cxz = c.bvp[1];
///////////////////////////////////
// R: 2 + 4 degree form
// BVP3 d0 = x1 - xD;
// BVP3 d1 = xL - x1;
// BVP d0_dot_n1_scaled = d0.dot(n1_scaled);
// BVP d1_dot_n1_scaled = d1.dot(n1_scaled);
// BVP3 t1_scaled1 = n1_scaled.cross(p11);
// BVP3 t1_scaled2 = n1_scaled.cross(p12);
// BVP d0_dot_t1_scaled2 = d0.dot(t1_scaled2);
// BVP d1_dot_t1_scaled2 = d1.dot(t1_scaled2);
// Czy = d0_dot_n1_scaled * d1_dot_t1_scaled2 + d0_dot_t1_scaled2 * d1_dot_n1_scaled;
// BVP3 s = xL - xD;
// BVP3 cop = (d0.cross(s)).cross(n1_scaled.cross(s));
// Cxz = cop.bvp[0];
///////////////////////////////////
// T: 6 degree form
// double eta = 1.5041833;
// BVP3 d0 = x1 - xD;
// BVP3 d1 = xL - x1;
// BVP d0_norm2 = d0.dot(d0);
// BVP d1_norm2 = d1.dot(d1);
// BVP3 c0 = d0.cross(n1_scaled);
// BVP3 c1 = d1.cross(n1_scaled);
// BVP3 c = c0 * c0 * d1_norm2 - c1 * c1 * d0_norm2 * BVP(1, eta * eta) ;
// Czy = c.bvp[0];
// Cxz = c.bvp[1];
///////////////////////////////////
// RR: 15 degree form
BVP3 d0 = x1 - xD;
BVP3 omega1_scaled = d0 * (n1_scaled.dot(n1_scaled)) - n1_scaled * (n1_scaled.dot(d0)) * BVP(1, 2);
u2_scaled = omega1_scaled.cross(p22).dot(x1 - p20);
v2_scaled = (x1 - p20).cross(p21).dot(omega1_scaled);
kappa2 = omega1_scaled.cross(p22).dot(p21);
BVP3 x2_scaled = p20 * kappa2 + p21 * u2_scaled + p22 * v2_scaled;
BVP3 d2_scaled = xL * kappa2 - x2_scaled;
BVP3 n2_scaled = n20 * kappa2 + n21 * u2_scaled + n22 * v2_scaled;
BVP3 t21_scaled = n2_scaled.cross(p21);
BVP3 t22_scaled = n2_scaled.cross(p22);
BVP omega1_scaled_dot_n2_scaled = omega1_scaled.dot(n2_scaled);
BVP d2_scaled_dot_n2_scaled = d2_scaled.dot(n2_scaled);
Czy = omega1_scaled_dot_n2_scaled * (d2_scaled.dot(t22_scaled)) + d2_scaled_dot_n2_scaled * (omega1_scaled.dot(t22_scaled));
Czy.printCoefficientsMatrix();
BVP cop = d2_scaled.cross(xL - x1).dot(n2_scaled);
Cxz = cop;
// ///////////////////////////////////
// //TT:
// double eta = 1.5041833;
// BVP3 d0 = x1 - xD;
// BVP3 p0 = p10, p1 = p10 + p11, p2 = p12 + p10;
// BVP norm1 = (p0 - xD).dot(p0 - xD), norm2 = (p1 - xD).dot(p1 - xD), norm3 = (p2 - xD).dot(p2 - xD);
// const double mu1 = std::max(std::max(norm1.coeffs[0][0], norm2.coeffs[0][0]), norm3.coeffs[0][0]);
// BVP beta1 = n1_scaled.dot(n1_scaled) * d0.dot(d0) - (n1_scaled.dot(n1_scaled) * d0.dot(d0) - d0.dot(n1_scaled) * d0.dot(n1_scaled)) * BVP(1, 1 / (eta * eta));
// beta1 = beta1 * BVP(1, 1 / mu1);
// BVP3 first_term = (d0 * n1_scaled.dot(n1_scaled) - n1_scaled * d0.dot(n1_scaled)) * BVP(1, 1 / eta);
// // 2 degree rational approximant :
// const double a_0 = 5.88428458e-04, a_1 = 7.61441386e-01, a_2 = 3.40458305e+00,
// b_0 = 7.50718012e-02, b_1 = 2.55906806e+00, b_2 = 1.54868566e+00;
// BVP numerator = BVP(1, a_0) + BVP(1, a_1) * beta1 + BVP(1, a_2) * beta1 * beta1;
// BVP denominator = BVP(1, b_0) + BVP(1, b_1) * beta1 + BVP(1, b_2) * beta1 * beta1;
// // 3 degree rational approximant :
// // const double a_0 = 4.64579103e-05, a_1 = 2.78083875e+01, a_2 = 7.49056119e+02, a_3 = 1.16778434e+03,
// // b_0 = 1.32404066e+00, b_1 = 2.10703627e+02, b_2 = 1.34168102e+03, b_3 = 3.91642093e+02;
// // BVP numerator = BVP(1, a_0) + BVP(1, a_1) * beta1 + BVP(1, a_2) * beta1 * beta1 + BVP(1, a_3) * beta1 * beta1 * beta1;
// // BVP denominator = BVP(1, b_0) + BVP(1, b_1) * beta1 + BVP(1, b_2) * beta1 * beta1 + BVP(1, b_3) * beta1 * beta1 * beta1;
// Please refer to the code for piecewise rational approximation
// BVP3 omega1_scaled = first_term * denominator * BVP(1, 1 / std::sqrt(mu1)) - n1_scaled * numerator;
// u2_scaled = omega1_scaled.cross(p22).dot(x1 - p20);
// v2_scaled = (x1 - p20).cross(p21).dot(omega1_scaled);
// kappa2 = omega1_scaled.cross(p22).dot(p21);
// BVP3 x2_scaled = p20 * kappa2 + p21 * u2_scaled + p22 * v2_scaled;
// BVP3 d1_scaled = x2_scaled - x1 * kappa2;
// BVP3 d2_scaled = xL * kappa2 - x2_scaled;
// BVP3 n2_scaled = n20 * kappa2 + n21 * u2_scaled + n22 * v2_scaled;
// BVP d1_norm2 = d1_scaled.dot(d1_scaled);
// BVP d2_norm2 = d2_scaled.dot(d2_scaled);
// BVP3 c1 = d1_scaled.cross(n2_scaled);
// BVP3 c2 = d2_scaled.cross(n2_scaled);
// BVP3 c = c1 * c1 * d2_norm2 - c2 * c2 * d1_norm2 * BVP(1, eta * eta);
// Czy = c.bvp[0];
// // Cxz = c.bvp[1];
// BVP3 s = xL - x1;
// BVP3 cop = ((x2_scaled - x1 * kappa2).cross(s)).cross(n2_scaled.cross(s));
// Cxz = cop.bvp[0];
// Validate
double val_Czy = Czy.evaluateAtV(ans_v).evaluateAtU(ans_u);
double val_Cxz = Cxz.evaluateAtV(ans_v).evaluateAtU(ans_u);
double val_u2_scaled = u2_scaled.evaluateAtV(ans_v).evaluateAtU(ans_u);
double val_v2_scaled = v2_scaled.evaluateAtV(ans_v).evaluateAtU(ans_u);
double val_kappa2 = kappa2.evaluateAtV(ans_v).evaluateAtU(ans_u);
std::cout << "bvp Czy" << std::endl;
Czy.printCoefficientsMatrix();
std::cout << Czy.coeffs[0][0] << std::endl;
std::cout << "bvp Cxz" << std::endl;
Cxz.printCoefficientsMatrix();
std::cout << Cxz.coeffs[0][0] << std::endl;
std::cout << "bvp u2_scaled" << std::endl;
u2_scaled.printCoefficientsMatrix();
std::cout << "bvp v2_scaled" << std::endl;
v2_scaled.printCoefficientsMatrix();
std::cout << "bvp kappa2" << std::endl;
kappa2.printCoefficientsMatrix();
// std::cout << "Bezout" << std::endl;
// auto bezout = bezout_matrix(Czy.toUnivariatePolynomials(), Cxz.toUnivariatePolynomials());
// printUnivariatePolynomialMatrix(bezout);
std::cout << "result Czy=" << val_Czy << " Cxz=" << val_Cxz << std::endl;
std::cout << "u v k " << val_u2_scaled << " " << val_v2_scaled << " " << val_kappa2 << std::endl;
}