-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathREADME.Rmd
270 lines (196 loc) · 6.79 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
---
output: github_document
---
<!-- badges: start -->
[![Travis build status](https://travis-ci.com/moodymudskipper/typed.svg?branch=iteration2)](https://travis-ci.com/moodymudskipper/typed)
[![Codecov test coverage](https://codecov.io/gh/moodymudskipper/typed/branch/master/graph/badge.svg)](https://codecov.io/gh/moodymudskipper/typed?branch=master)
<!-- badges: end -->
```{r, include = FALSE}
knitr::opts_chunk$set(
error = TRUE,
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# typed <img src='man/figures/logo.png' align="right" height="139" />
*{typed}* implements a type system for R, it has 3 main features:
* set variable types in a script or the body of a function, so they can't be
assigned illegal values
* set argument types in a function definition
* set return type of a function
The user can define their own types, or leverage assertions from
other packages.
Under the hood variable types use active bindings, so once a variable is restricted
by an assertion, it cannot be modified in a way that would
not satisfy it.
## Installation
Install CRAN version with:
``` r
install.packages("typed")
```
or development version with :
``` r
remotes::install_github("moodymudskipper/typed")
```
And attach with :
```{r}
# masking warning about overriding `?`
library(typed, warn.conflicts = FALSE)
```
## Set variable type
### Question mark notation and `declare`
Here are examples on how we would set types
```{r}
Character() ? x # restrict x to "character" type
x <- "a"
x
Integer(3) ? y <- 1:3 # restrict y to "integer" type of length 3
y
```
We cannot assign values of the wrong type to `x` and `y` anymore.
```{r}
x <- 2
y <- 4:5
```
But the right type will work.
```{r}
x <- c("b", "c")
y <- c(1L, 10L, 100L)
```
`declare` is a strict equivalent, slightly more efficient, which looks like `base::assign`.
```{r}
declare("x", Character())
x <- "a"
x
declare("y", Integer(3), 1:3)
y
```
### Assertion factories and assertions
`Integer` and `Character` are function factories (functions that return functions),
thus `Integer(3)` and `Character()` are functions.
The latter functions operate checks on a value and in case of success
return this value, generally unmodified. For instance :
```{r}
Integer(3)(1:2)
Character()(3)
```
We call `Integer(3)` and `Character()` assertions, and we call
`Integer` and `Character` assertion factories (or just types, with then we must
be careful not to confuse them with atomic types returned by the `typeof` function).
The package contains many assertion factories (see `?assertion_factories`),
the main ones are:
* `Any` (No default restriction)
* `Logical`
* `Integer`
* `Double`
* `Character`
* `List`
* `Environment`
* `Factor`
* `Matrix`
* `Data.frame`
* `Date`
* `Time` (POSIXct)
### Advanced type restriction using arguments
As we've seen with `Integer(3)`, passing arguments to a
assertion factory restricts the type.
For instance `Integer` has arguments `length` `null_ok` and
`...`. We already used `length`, `null_ok` is convenient to allow a default `NULL`
value in addition to the `"integer"` type.
The arguments can differ between assertion factories, for instance `Data.frame`
has `nrow`, `ncol`, `each`, `null_ok` and `...`
```{r}
Data.frame() ? x <- iris
Data.frame(ncol = 2) ? x <- iris
Data.frame(each = Double()) ? x <- iris
```
In the dots we can use arguments named as functions and with the value of
the expected result.
```{r}
# Integer has no anyNA arg but we can still use it because a function named
# this way exists
Integer(anyNA = FALSE) ? x <- c(1L, 2L, NA)
```
Useful arguments might be for instance, `anyDuplicated = 0L`, `names = NULL`,
`attributes = NULL`... Any available function can be used.
That makes assertion factories very flexible! If it is still not flexible enough,
we can provide arguments arguments named `...` to functional factories to add
a custom restriction, this is usually better done by defining a wrapper.
```{r}
Character(1, ... = "`value` is not a fruit!" ~ . %in% c("apple", "pear", "cherry")) ?
x <- "potatoe"
```
This is often better done by defining a wrapper as shown below.
### Constants
To define a constant, we just surround the variable by parentheses (think of
them as a protection)
```{r}
Double() ? (x) <- 1
x <- 2
# defining a type is optional
? (y) <- 1
y <- 2
```
### Set a function's argument type
We can set argument types this way :
```{r}
add <- ? function (x= ? Double(), y= 1 ? Double()) {
x + y
}
```
Note that we started the definition with a `?`, and that we gave a default to
`y`, but not `x`. Note also the `=` sign next to `x`, necessary even when we
have no default value. If you forget it you'll have an error "unexpected `?` in ...".
This created the following function, by adding checks at the top of the
body
```{r}
add
```
Let's test it by providing a right and wrong type.
```{r}
add(2, 3)
add(2, 3L)
```
If we want to restrict `x` and `y` to the type "integer" in the rest of
the body, so they cannot be overwritten by character for instance,we can use
the `?+` notation :
```{r}
add <- ? function (x= ?+ Double(), y= 1 ?+ Double()) {
x + y
}
add
```
We see that it is translated into a `check_arg` call containing a `.bind = TRUE`
argument.
## Set a function's return type
To set a return type we use `?` before the function definition as in the previous section,
but we type an assertion on the left hand side.
```{r}
add_or_subtract <- Double() ? function (x, y, subtract = FALSE) {
if(subtract) return(x - y)
x + y
}
add_or_subtract
```
We see that the returned values have been wrapped inside `check_output` calls.
# Use type in a package and define your own types
See `vignette("typed-in-packaged", "typed")` or the Article section if you're
browsing the pkgdown website.
## Acknowledgements
This is inspired in good part by Jim Hester and Gabor Csardi's work and many
great efforts on static typing, assertions, or annotations in R, in particular:
* Gabor Csardy's [*argufy*](https://github.com/gaborcsardi/argufy)
* Richie Cotton's [*assertive*](https://bitbucket.org/richierocks/assertive/)
* Tony Fishettti's [*assertr*](https://github.com/tonyfischetti/assertr)
* Hadley Wickham's [*assertthat*](https://github.com/hadley/assertthat)
* Michel Lang's [*checkmate*](https://github.com/mllg/checkmate)
* Joe Thorley's [*checkr*](https://github.com/poissonconsulting/checkr)
* Joe Thorley's [*chk*](https://github.com/poissonconsulting/chk/)
* Aviral Goel's [*contractr*](https://github.com/aviralg/contractr)
* Stefan Bache's [*ensurer*](https://github.com/smbache/ensurer)
* Brian Lee Yung Rowe's [*lambda.r*](https://github.com/zatonovo/lambda.r)
* Kun Ren's [*rtype*](https://github.com/renkun-ken/rtype)
* Duncan Temple Lang's [*TypeInfo*](https://bioconductor.org/packages/TypeInfo/)
* Jim Hester's [*types*](https://github.com/jimhester/types)