-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
227 lines (184 loc) · 9.69 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
from torch.optim import Adam
from torch.utils.data import Dataset, DataLoader
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from pathlib import Path
import pickle
import os
import sys
sys.path.append(os.getcwd())
from tqdm.auto import tqdm
from tqdm import trange
import json
import copy
import random
import socket
from lib.Constants import *
from lib.Dataloader import AugmentedCovidDataset, SampledCovidDataset
from lib.utils import EarlyStopping, plot_combo
from experiments import add_common_args
from lib.models import criterion_func, load_model
from argparse import ArgumentParser
from lib.train_helper import train_epoch, predict
from lib.utils import save_checkpoint, load_checkpoint, has_checkpoint, save_model, predictions_to_df, load_data_features
parser = ArgumentParser()
parser.add_argument('--experiment_name', type=str, default = '')
parser.add_argument('--data_dir', type=Path, required=True)
parser.add_argument('--date_cutoff', type=str, default = '2021-02-08', help = 'Should be a Monday')
parser.add_argument('--n_val_days', type=int, default = 30)
parser.add_argument('--feature_set', type = str, choices = ['states', 'condensed', 'expanded'], default = 'condensed')
parser.add_argument('--output_dir', type = Path, required = True)
parser.add_argument('--batch_size', type=int, default = 32)
parser.add_argument('--smoothed', action = 'store_true')
parser.add_argument('--target_type', type = str, choices = ['count', 'log', 'shifted_log'], default = 'log')
parser.add_argument('--lr', type = float, default = 1e-3)
parser.add_argument('--n_layer', type = int, default = 3)
parser.add_argument('--n_units', type = int, default = 50)
parser.add_argument('--seed', type = int, default = 42)
parser.add_argument('--latent_dim', type = int, default = 32)
parser.add_argument('--reconstr_weight', type = float, default = 1.0)
parser.add_argument('--final_activation', type = str, choices = ['softplus', 'relu', 'none'], default = 'softplus')
parser.add_argument('--dropout_p', type = float, default = 0.0)
parser.add_argument('--ohe_features', action = 'store_true')
parser.add_argument('--min_epochs', type = int, default = 1000)
parser.add_argument('--trunc_patience', type = int, default = 20)
parser.add_argument('--n_train_trajectories', type = int, default = 10)
parser.add_argument('--n_finetune_epochs', type = int, default = 5)
parser.add_argument('--checkpoint_freq', type = int, default = 20)
parser.add_argument('--elbo_type', type = str, choices = ["vae", "iwae"], default = "vae")
parser.add_argument('--noise_std', type = float, default = 0.5)
parser.add_argument('--cond_features', type = str, choices = ['stringency', 'all', 'none'], default = 'stringency')
parser.add_argument('--clip_value', type = float)
parser.add_argument('--dec_type', type = str, choices = ["AR", "NN"], default="AR")
parser.add_argument('--stl', action = 'store_true')
parser.add_argument('--shift', type = int, default = 0)
parser.add_argument('--include_counties', action = 'store_true')
parser.add_argument('--num_workers', type = int, default = 4)
parser = add_common_args(parser)
args = parser.parse_args()
print("Environment:")
print("\tPython: {}".format(sys.version.split(" ")[0]))
print("\tPyTorch: {}".format(torch.__version__))
print("\tCUDA: {}".format(torch.version.cuda))
print("\tCUDNN: {}".format(torch.backends.cudnn.version()))
print("\tNumPy: {}".format(np.__version__))
print("\tNode: {}".format(socket.gethostname()))
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
(args.output_dir).mkdir(parents=True, exist_ok=True)
(args.output_dir/'job_id').write_text(str(os.environ['SLURM_JOBID']))
min_decode_times = 2
max_decode_times = 60
with (args.output_dir/'args.json').open('w') as f:
temp = copy.deepcopy(vars(args))
for i in temp:
if isinstance(temp[i], Path):
temp[i] = os.fspath(temp[i])
json.dump(temp, f, indent = 4)
print(json.dumps(temp, indent = 4, sort_keys = True))
device = 'cuda' if torch.cuda.is_available() else 'cpu'
all_features, df, countries, id_mapping, reverse_id_mapping = load_data_features(args.data_dir, vars(args))
test_cutoff = pd.Timestamp(args.date_cutoff)
assert(test_cutoff.strftime('%A') == 'Monday')
val_cutoff = test_cutoff - pd.Timedelta(days = args.n_val_days)
print("Test cutoff: %s\nValidation cutoff: %s" % (test_cutoff, val_cutoff))
train_val_df = df[(df.date < test_cutoff) & (df.zero_time < val_cutoff)]
unique_countries = train_val_df.key.unique()
print("# samples: " + str(len(unique_countries)))
if args.ohe_features:
all_features += unique_countries.tolist()
for country in unique_countries:
train_val_df[country] = (train_val_df['key'] == country).astype(int)
df[country] = (df['key'] == country).astype(int)
if args.model == 'lode' and args.concat_cond_ts:
assert(args.cond_features != 'none')
net = load_model(all_features, vars(args)).to(device)
print("# parameters: ", sum(a.numel() for a in net.parameters()))
optimizer = Adam(params = net.parameters(), lr = args.lr)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode = 'min', factor = 0.1, patience = 10)
es = EarlyStopping(patience=20)
if args.data_type == 'debug':
n_epochs = 30
else:
n_epochs = 10000
es_path = args.output_dir / 'model'
if has_checkpoint() and not args.data_type == 'debug':
state = load_checkpoint()
net.load_state_dict(state['model_dict'])
optimizer.load_state_dict(state['optimizer_dict'])
scheduler.load_state_dict(state['scheduler_dict'])
start_step = state['start_step']
es = state['es']
torch.random.set_rng_state(state['rng'])
random.setstate(state['rng_python'])
logs = state['logs']
print("Loaded checkpoint at epoch %s" % start_step, flush = True)
else:
start_step = 1
logs = []
known_states = ['delI_smoothed', 'delD_smoothed'] if args.smoothed else ['delI', 'delD']
for epoch in range(start_step, n_epochs+1):
if es.early_stop:
break
if args.randomize_training:
trunc = 5 + epoch//args.trunc_patience
nsteps_decode = random.randint(min_decode_times,
min_decode_times + min(max_decode_times - min_decode_times, epoch//args.trunc_patience))
train_val_dataset = SampledCovidDataset(train_val_df, unique_countries, val_cutoff,
test_cutoff, all_features,
known_states=known_states,
target_type=args.target_type,
samp_pad=(14, nsteps_decode), trunc=trunc)
else:
trunc = 5 + epoch//args.trunc_patience
nsteps_decode = random.randint(min_decode_times,
min_decode_times + min(max_decode_times - min_decode_times, epoch//args.trunc_patience))
train_val_dataset = AugmentedCovidDataset(train_val_df, unique_countries, val_cutoff, test_cutoff, all_features,
known_states=known_states, target_type=args.target_type,
nsteps_decode=nsteps_decode, trunc=trunc)
train_val_loader = DataLoader(train_val_dataset, batch_size = args.batch_size, shuffle=True, num_workers = args.num_workers)
train_epoch_stats = train_epoch(train_val_loader, net, optimizer, device, nsteps_decode,
args.n_train_trajectories, args.elbo_type,
args.reconstr_weight, criterion_func, args.noise_std,
clip_value=args.clip_value, shift=args.shift)
val_epoch_stats = predict(train_val_loader, net, device, n_elbo_samp=1,
elbo_type=args.elbo_type, noise_std=args.noise_std, shift=args.shift)
print("Epoch: %d \t Train loss (last batch): %.3e \t Train Pred MSE: %.3e \t Train Reconstr MSE: %.3e\t Val MSE: %.3e "% (
epoch, train_epoch_stats['train_loss'], train_epoch_stats['train_pred_mse'], train_epoch_stats['train_reconstr_mse'], val_epoch_stats['val_mse'],
), flush = True)
if epoch % args.checkpoint_freq == 0:
logs.append({
'epoch': epoch,
'train': train_epoch_stats,
'val': val_epoch_stats
})
save_checkpoint(net, optimizer, scheduler,
epoch+1, es, torch.random.get_rng_state(), random.getstate(), logs)
if epoch >= args.min_epochs:
es(val_epoch_stats['val_mse'], es_path, net)
scheduler.step(val_epoch_stats['val_mse'])
if args.data_type == 'debug' or not es_path.is_file():
model_state_dict = net.state_dict()
else:
model_state_dict = torch.load(es_path)
val_dataset = AugmentedCovidDataset(train_val_df, unique_countries, val_cutoff, test_cutoff,
all_features, known_states=known_states,
target_type=args.target_type, nsteps_decode=1, trunc=None)
val_loader = DataLoader(val_dataset, batch_size = args.batch_size * 2, shuffle = False, num_workers = args.num_workers)
predict_output = predict(val_loader, net, device, n_elbo_samp=50,
elbo_type=args.elbo_type, noise_std=args.noise_std)
pred_dfs, val_metrics = predictions_to_df(predict_output, train_val_df, val_cutoff,
args.target_type)
pickle.dump(pred_dfs, (args.output_dir/'val_preds.pkl').open('wb'))
pickle.dump(logs, (args.output_dir/'logs.pkl').open('wb'))
with (args.output_dir/'val_metrics.json').open('w') as f:
json.dump(val_metrics, f)
print(json.dumps(val_metrics, indent = 4))
with (args.output_dir/'done').open('w') as f:
f.write('done')