-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathCustomDataProc.py
267 lines (234 loc) · 11.8 KB
/
CustomDataProc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
from keras import backend as K
from keras.engine.topology import Layer
import keras
import code
import numpy as np
import cv2
import code
from imgaug import augmenters as iaa
import imgaug as ia
#--------------------------------------------------------------------------------
# Data
#--------------------------------------------------------------------------------
# TODO : removal
def dataload_( n_tokyoTimeMachine, n_Pitssburg, nP, nN ):
D = []
if n_tokyoTimeMachine > 0 :
TTM_BASE = '/Bulk_Data/data_Akihiko_Torii/Tokyo_TM/tokyoTimeMachine/' #Path of Tokyo_TM
pr = TimeMachineRender( TTM_BASE )
print 'tokyoTimeMachine:: nP=', nP, '\tnN=', nN
for s in range(n_tokyoTimeMachine):
a,_ = pr.step(nP=nP, nN=nN, return_gray=False, resize=(320,240), apply_distortions=False, ENABLE_IMSHOW=False)
if s%100 == 0:
print 'get a sample Tokyo_TM #%d of %d\t' %(s, n_tokyoTimeMachine),
print a.shape
D.append( a )
if n_Pitssburg > 0 :
PTS_BASE = '/Bulk_Data/data_Akihiko_Torii/Pitssburg/'
pr = PittsburgRenderer( PTS_BASE )
print 'Pitssburg nP=', nP, '\tnN=', nN
for s in range(n_Pitssburg):
a,_ = pr.step(nP=nP, nN=nN, return_gray=False, resize=(240,320), apply_distortions=False, ENABLE_IMSHOW=False)
if s %100 == 0:
print 'get a sample Pitssburg #%d of %d\t' %(s, n_Pitssburg),
print a.shape
D.append( a )
return D
def do_augmentation( D ):
""" D : Nx(n+p+1)xHxWx3. Return N1x(n+p+1)xHxWx3 """
n_samples = D.shape[0]
n_images_per_sample = D.shape[1]
im_rows = D.shape[2]
im_cols = D.shape[3]
im_chnl = D.shape[4]
E = D.reshape( n_samples*n_images_per_sample, im_rows,im_cols,im_chnl )
sometimes = lambda aug: iaa.Sometimes(0.5, aug)
# Very basic
if True:
seq = iaa.Sequential([
sometimes( iaa.Crop(px=(0, 50)) ), # crop images from each side by 0 to 16px (randomly chosen)
# iaa.Fliplr(0.5), # horizontally flip 50% of the images
iaa.GaussianBlur(sigma=(0, 3.0)), # blur images with a sigma of 0 to 3.0
sometimes( iaa.Affine(
scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
rotate=(-25, 25),
shear=(-8, 8)
) )
])
seq_vbasic = seq
# Sometimes(0.5, ...) applies the given augmenter in 50% of all cases,
# e.g. Sometimes(0.5, GaussianBlur(0.3)) would blur roughly every second image.
# Typical
if True:
seq = iaa.Sequential([
iaa.Fliplr(0.5), # horizontal flips
iaa.Crop(percent=(0, 0.1)), # random crops
# Small gaussian blur with random sigma between 0 and 0.5.
# But we only blur about 50% of all images.
iaa.Sometimes(0.5,
iaa.GaussianBlur(sigma=(0, 0.5))
),
# Strengthen or weaken the contrast in each image.
iaa.ContrastNormalization((0.75, 1.5)),
# Add gaussian noise.
# For 50% of all images, we sample the noise once per pixel.
# For the other 50% of all images, we sample the noise per pixel AND
# channel. This can change the color (not only brightness) of the
# pixels.
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5),
# Make some images brighter and some darker.
# In 20% of all cases, we sample the multiplier once per channel,
# which can end up changing the color of the images.
iaa.Multiply((0.8, 1.2), per_channel=0.2),
# Apply affine transformations to each image.
# Scale/zoom them, translate/move them, rotate them and shear them.
iaa.Affine(
scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
rotate=(-25, 25),
shear=(-8, 8)
)
], random_order=True) # apply augmenters in random order
# seq = sometimes( seq )
seq_typical = seq
# Heavy
if True:
# Define our sequence of augmentation steps that will be applied to every image
# All augmenters with per_channel=0.5 will sample one value _per image_
# in 50% of all cases. In all other cases they will sample new values
# _per channel_.
seq = iaa.Sequential(
[
# apply the following augmenters to most images
iaa.Fliplr(0.2), # horizontally flip 20% of all images
iaa.Flipud(0.2), # vertically flip 20% of all images
# crop images by -5% to 10% of their height/width
sometimes(iaa.CropAndPad(
percent=(-0.05, 0.1),
pad_mode=ia.ALL,
pad_cval=(0, 255)
)),
sometimes(iaa.Affine(
scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, # translate by -20 to +20 percent (per axis)
rotate=(-45, 45), # rotate by -45 to +45 degrees
shear=(-16, 16), # shear by -16 to +16 degrees
order=[0, 1], # use nearest neighbour or bilinear interpolation (fast)
cval=(0, 255), # if mode is constant, use a cval between 0 and 255
mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
)),
# execute 0 to 5 of the following (less important) augmenters per image
# don't execute all of them, as that would often be way too strong
iaa.SomeOf((0, 5),
[
sometimes(iaa.Superpixels(p_replace=(0, 1.0), n_segments=(20, 200))), # convert images into their superpixel representation
iaa.OneOf([
iaa.GaussianBlur((0, 3.0)), # blur images with a sigma between 0 and 3.0
iaa.AverageBlur(k=(2, 7)), # blur image using local means with kernel sizes between 2 and 7
#iaa.MedianBlur(k=(3, 11)), # blur image using local medians with kernel sizes between 2 and 7
]),
iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)), # sharpen images
iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), # emboss images
# search either for all edges or for directed edges,
# blend the result with the original image using a blobby mask
iaa.SimplexNoiseAlpha(iaa.OneOf([
iaa.EdgeDetect(alpha=(0.5, 1.0)),
iaa.DirectedEdgeDetect(alpha=(0.5, 1.0), direction=(0.0, 1.0)),
])),
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5), # add gaussian noise to images
iaa.OneOf([
iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
]),
iaa.Invert(0.05, per_channel=True), # invert color channels
iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
iaa.AddToHueAndSaturation((-20, 20)), # change hue and saturation
# either change the brightness of the whole image (sometimes
# per channel) or change the brightness of subareas
iaa.OneOf([
iaa.Multiply((0.5, 1.5), per_channel=0.5),
iaa.FrequencyNoiseAlpha(
exponent=(-4, 0),
first=iaa.Multiply((0.5, 1.5), per_channel=True),
second=iaa.ContrastNormalization((0.5, 2.0))
)
]),
iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
iaa.Grayscale(alpha=(0.0, 1.0)),
sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05))), # sometimes move parts of the image around
sometimes(iaa.PerspectiveTransform(scale=(0.01, 0.1)))
],
random_order=True
)
],
random_order=True
)
seq_heavy = seq
print 'Add data'
L = [E]
print 'seq_vbasic'
L.append( seq_vbasic.augment_images(E) )
print 'seq_typical'
L.append( seq_typical.augment_images(E) )
print 'seq_typical'
L.append( seq_typical.augment_images(E) )
print 'seq_heavy'
L.append( seq_heavy.augment_images(E) )
G = [ l.reshape(n_samples, n_images_per_sample, im_rows,im_cols,im_chnl) for l in L ]
G = np.concatenate( G )
print 'Input.shape ', D.shape, '\tOutput.shape ', G.shape
return G
# for j in range(n_times):
# images_aug = seq.augment_images(E)
# # L.append( images_aug.reshape( n_samples, n_images_per_sample, im_rows,im_cols,im_chnl ) )
# L.append( images_aug )
# code.interact( local=locals() )
return L
def do_typical_data_aug( D ):
""" D : Nx(n+p+1)xHxWx3. Return N1x(n+p+1)xHxWx3 """
D = np.array( D )
assert( len(D.shape) == 5 )
print '[do_typical_data_aug]', 'D.shape=', D.shape
n_samples = D.shape[0]
n_images_per_sample = D.shape[1]
im_rows = D.shape[2]
im_cols = D.shape[3]
im_chnl = D.shape[4]
E = D.reshape( n_samples*n_images_per_sample, im_rows,im_cols,im_chnl )
sometimes = lambda aug: iaa.Sometimes(0.5, aug)
sometimes_2 = lambda aug: iaa.Sometimes(0.2, aug)
seq = iaa.Sequential( [
#iaa.Fliplr(0.5), # horizontal flips
#iaa.Crop(percent=(0, 0.1)), # random crops
# Small gaussian blur with random sigma between 0 and 0.5.
# But we only blur about 50% of all images.
iaa.Sometimes(0.5,
iaa.GaussianBlur(sigma=(0, 0.5))
),
# Strengthen or weaken the contrast in each image.
iaa.ContrastNormalization((0.75, 1.5)),
# Add gaussian noise.
# For 50% of all images, we sample the noise once per pixel.
# For the other 50% of all images, we sample the noise per pixel AND
# channel. This can change the color (not only brightness) of the
# pixels.
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5),
# Make some images brighter and some darker.
# In 20% of all cases, we sample the multiplier once per channel,
# which can end up changing the color of the images.
iaa.Multiply((0.8, 1.2), per_channel=0.2),
# Apply affine transformations to each image.
# Scale/zoom them, translate/move them, rotate them and shear them.
iaa.Affine(
scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
rotate=(-45, 45),
shear=(-8, 8)
)
], random_order=True) # apply augmenters in random order
D = seq.augment_images(E)
D = D.reshape(n_samples, n_images_per_sample, im_rows,im_cols,im_chnl)
print '[do_typical_data_aug] Done...!', 'D.shape=', D.shape
return D