Skip to content

Latest commit

 

History

History
executable file
·
338 lines (294 loc) · 28 KB

README.md

File metadata and controls

executable file
·
338 lines (294 loc) · 28 KB

Thai-Sentence-Vector-Benchmark

Benchmark for Thai sentence representation based on Thai STS-B, Text classification, and Retrieval datasets.

Motivation

Sentence representation plays a crucial role in NLP downstream tasks such as NLI, text classification, and STS. Recent sentence representation training techniques require NLI or STS datasets. However, no equivalent Thai NLI or STS datasets exist for sentence representation training. To address this problem, we create "Thai sentence vector benchmark" to demonstrate that we can train Thai sentence representation without any supervised dataset.

Our first preliminary results demonstrate that we can train a robust sentence representation model with an unsupervised technique called SimCSE. We show that it is possible to train SimCSE with 1.3 M sentences from Wikipedia within 2 hours on the Google Colab (V100), where the performance of SimCSE-XLM-R is similar to mDistil-BERT<-mUSE (train on > 1B sentences).

Moreover, we provide the Thai sentence vector benchmark. Our benchmark aims to evaluate the effectiveness of sentence embedding models on Thai zero-shot and transfer learning tasks. The tasks comprise of four tasks: Semantic ranking on STS-B, text classification (transfer), pair classification, and retrieval question answering (QA).

Install

conda create -n thai_sentence_vector_benchmark python==3.11.4
conda activate thai_sentence_vector_benchmark

# Select the appropriate PyTorch version based on your CUDA version
# CUDA 11.8
conda install pytorch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 pytorch-cuda=11.8 -c pytorch -c nvidia
# CUDA 12.1
conda install pytorch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 pytorch-cuda=12.1 -c pytorch -c nvidia
# CPU Only
conda install pytorch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 cpuonly -c pytorch

pip install -e .

Reproduce the results

python scripts/eval_all.py \
--cohere_api_key <YOUR_COHERE_API_KEY> \
--openai_api_key <YOUR_OPENAI_API_KEY>

Usage

from sentence_transformers import SentenceTransformer
from thai_sentence_vector_benchmark.benchmark import ThaiSentenceVectorBenchmark

model = SentenceTransformer("intfloat/e5-mistral-7b-instruct")
benchmark = ThaiSentenceVectorBenchmark()
results = benchmark(
  model,
  task_prompts={
    "sts": "Instruct: Retrieve semantically similar text.\nQuery: ",
    "retrieval": "Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery: ",
    "pair_classification": "Instruct: Retrieve parallel sentences.\nQuery: ",
    "text_classification": "Instruct: Classify the sentiment of the text.\nText: ",
  }
)
>> {
  "STS": {
    "sts_b": {"Spearman_Correlation": float},
    "Average": {"Spearman_Correlation": float},
  },
  "Text_Classification": {
    "wisesight": {"Accuracy": float, "F1": float},
    "wongnai": {"Accuracy": float, "F1": float},
    "generated_reviews": {"Accuracy": float, "F1": float},
    "Average": {"Accuracy": float, "F1": float},
  },
  "Pair_Classification": {
    "xnli": {"AP": float},
    "Average": {"AP": float},
  },
  "Retrieval": {
    "xquad": {"R@1": float, "MRR@10": float},
    "miracl": {"R@1": float, "MRR@10": float},
    "tydiqa": {"R@1": float, "MRR@10": float},
    "Average": {"R@1": float, "MRR@10": float},
  },
  "Average": float,
}

How do we train unsupervised sentence representation?

We provide simple and effective sentence embedding methods that do not require supervised labels (unsupervised learning) as follows:

SimCSE

ConGen

SCT

Why do we select these techniques?

  • Easy to train
  • Compatible with every model
  • Do not require any annotated dataset
  • The best sentence representation method (for now) in terms of the performance on STS and downstream tasks (SCT outperformed ConGen and SimCSE in their paper).

What about other techniques?

We also consider other techniques (supervised and unsupervised methods) in this repository. Currently, we have various methods tested on our benchmarks, such as:

  • Supervised learning: sentence-bert.
  • Multilingual sentence representation alignment: CL-ReLKT (NAACL'22)

Thai semantic textual similarity benchmark

Base Model Spearman's Correlation (*100) Supervised? Latency(ms)
simcse-model-distil-m-bert 44.27 7.22 ± 0.53
simcse-model-m-bert-thai-cased 43.95 11.66 ± 0.72
simcse-model-XLMR 63.98 10.95 ± 0.41
simcse-model-wangchanberta 60.95 10.54 ± 0.33
simcse-model-phayathaibert 68.28 11.4 ± 1.01
SCT-model-XLMR 68.90 10.52 ± 0.46
SCT-model-wangchanberta 71.35 10.61 ± 0.62
SCT-model-phayathaibert 74.06 10.64 ± 0.72
SCT-Distil-model-XLMR 78.78 10.69 ± 0.48
SCT-Distil-model-wangchanberta 77.77 10.86 ± 0.55
SCT-Distil-model-phayathaibert 77.89 11.01 ± 0.62
SCT-Distil-model-phayathaibert-bge-m3 76.71
ConGen-model-XLMR 79.69 10.79 ± 0.38
ConGen-model-wangchanberta 79.20 10.44 ± 0.5
ConGen-model-phayathaibert 78.90 10.32 ± 0.31
ConGen-BGE_M3-model-phayathaibert 76.82 10.91 ± 0.43
distiluse-base-multilingual-cased-v2 65.37 ✔️ 9.38 ± 1.34
paraphrase-multilingual-mpnet-base-v2 80.49 ✔️ 10.93 ± 0.55
BGE M-3 77.22 ✔️ 23.5 ± 3.07
Cohere-embed-multilingual-v2.0 68.03 ✔️

Thai transfer benchmark

Wisesight

Base Model Acc (*100) F1 (*100, weighted) Supervised?
simcse-model-distil-m-bert 56.12 56.60
simcse-model-m-bert-thai-cased 55.86 56.65
simcse-model-XLMR 62.07 62.76
simcse-model-wangchanberta 64.17 64.39
simcse-model-phayathaibert 68.59 67.73
SCT-model-XLMR 67.47 67.62
SCT-model-wangchanberta 68.51 68.97
SCT-model-phayathaibert 70.80 68.60
SCT-Distil-model-XLMR 67.73 67.75
SCT-Distil-model-wangchanberta 65.78 66.17
SCT-Distil-model-phayathaibert 66.64 66.94
SCT-Distil-model-phayathaibert-bge-m3 67.28 67.70
ConGen-model-XLMR 66.75 67.41
ConGen-model-wangchanberta 67.09 67.65
ConGen-model-phayathaibert 67.65 68.12
ConGen-BGE_M3-model-phayathaibert 68.62 68.92
distiluse-base-multilingual-cased-v2 63.31 63.74 ✔️
paraphrase-multilingual-mpnet-base-v2 67.05 67.67 ✔️
BGE M-3 68.36 68.92 ✔️
Cohere-embed-multilingual-v2.0 66.72 67.24 ✔️

Wongnai

Base Model Acc (*100) F1 (*100, weighted) Supervised?
simcse-model-distil-m-bert 34.31 35.81
simcse-model-m-bert-thai-cased 37.55 38.29
simcse-model-XLMR 40.46 38.06
simcse-model-wangchanberta 40.95 37.58
simcse-model-phayathaibert 37.53 38.45
SCT-model-XLMR 42.88 44.75
SCT-model-wangchanberta 47.90 47.23
SCT-model-phayathaibert 54.73 49.48
SCT-Distil-model-XLMR 46.16 47.02
SCT-Distil-model-wangchanberta 48.61 44.89
SCT-Distil-model-phayathaibert 48.86 48.14
SCT-Distil-model-phayathaibert-bge-m3 45.95 47.29
ConGen-model-XLMR 44.95 46.57
ConGen-model-wangchanberta 46.72 48.04
ConGen-model-phayathaibert 45.99 47.54
ConGen-BGE_M3-model-phayathaibert 47.98 49.22
distiluse-base-multilingual-cased-v2 37.76 40.07 ✔️
paraphrase-multilingual-mpnet-base-v2 45.20 46.72 ✔️
BGE M-3 51.94 52.68 ✔️
Cohere-embed-multilingual-v2.0 46.83 48.08 ✔️

Generated Review

Base Model Acc (*100) F1 (*100, weighted) Supervised?
simcse-model-distil-m-bert 39.11 37.27
simcse-model-m-bert-thai-cased 38.72 37.56
simcse-model-XLMR 46.27 44.22
simcse-model-wangchanberta 37.37 36.72
simcse-model-phayathaibert 48.76 45.14
SCT-model-XLMR 55.93 54.19
SCT-model-wangchanberta 50.39 48.65
SCT-model-phayathaibert 54.90 48.36
SCT-Distil-model-XLMR 56.76 55.50
SCT-Distil-model-wangchanberta 52.33 48.41
SCT-Distil-model-phayathaibert 54.35 52.23
SCT-Distil-model-phayathaibert-bge-m3 58.95 57.64
ConGen-model-XLMR 57.93 56.66
ConGen-model-wangchanberta 58.67 57.51
ConGen-model-phayathaibert 58.43 57.23
ConGen-BGE_M3-model-phayathaibert 59.66 58.37
distiluse-base-multilingual-cased-v2 50.62 48.90 ✔️
paraphrase-multilingual-mpnet-base-v2 57.48 56.35 ✔️
BGE M-3 59.53 58.35 ✔️
Cohere-embed-multilingual-v2.0 57.91 56.60 ✔️

Thai pair classification benchmark

Base Model Dev (AP) Test (AP) Supervised?
simcse-model-distil-m-bert 57.99 56.06
simcse-model-m-bert-thai-cased 58.41 58.09
simcse-model-XLMR 62.05 62.05
simcse-model-wangchanberta 58.13 59.01
simcse-model-phayathaibert 62.10 63.34
SCT-model-XLMR 64.53 65.29
SCT-model-wangchanberta 66.36 66.79
SCT-model-phayathaibert 65.35 65.84
SCT-Distil-model-XLMR 78.40 79.14
SCT-Distil-model-wangchanberta 77.06 76.75
SCT-Distil-model-phayathaibert 77.95 77.61
SCT-Distil-model-phayathaibert-bge-m3 75.18 74.83
ConGen-model-XLMR 80.68 80.98
ConGen-model-wangchanberta 82.24 81.15
ConGen-model-phayathaibert 80.89 80.51
ConGen-BGE_M3-model-phayathaibert 76.72 76.13
distiluse-base-multilingual-cased-v2 65.35 64.93 ✔️
paraphrase-multilingual-mpnet-base-v2 84.14 84.06 ✔️
BGE M-3 79.09 79.02 ✔️
Cohere-embed-multilingual-v2.0 60.25 61.15 ✔️

Thai retrieval benchmark

XQuAD

Base Model R@1 MRR@10 Supervised? Latency(second)
simcse-model-distil-m-bert 18.24 27.19 0.61
simcse-model-m-bert-thai-cased 22.94 30.29 1.02
simcse-model-XLMR 52.02 62.94 0.85
simcse-model-wangchanberta 53.87 65.51 0.81
simcse-model-phayathaibert 73.95 81.67 0.79
SCT-model-XLMR 55.29 65.23 1.24
SCT-model-wangchanberta 66.30 76.14 1.23
SCT-model-phayathaibert 67.56 76.14 1.19
SCT-Distil-model-XLMR 68.91 78.19 1.24
SCT-Distil-model-wangchanberta 62.27 72.53 1.35
SCT-Distil-model-phayathaibert 71.43 80.18 1.21
SCT-Distil-model-phayathaibert-bge-m3 80.50 86.75
ConGen-model-XLMR 71.76 80.01 1.24
ConGen-model-wangchanberta 70.92 79.59 1.21
ConGen-model-phayathaibert 71.85 80.33 1.19
ConGen-BGE_M3-model-phayathaibert 85.80 90.48 1.3
distiluse-base-multilingual-cased-v2 49.16 58.19 ✔️ 1.05
paraphrase-multilingual-mpnet-base-v2 71.26 79.63 ✔️ 1.24
BGE M-3 90.50 94.33 ✔️ 7.22
Cohere-embed-multilingual-v2.0 82.52 87.78 ✔️ XXX

MIRACL

Base Model R@1 MRR@10 Supervised? Latency(second)
simcse-model-distil-m-bert 28.51 37.05 4.31
simcse-model-m-bert-thai-cased 26.19 36.11 6.66
simcse-model-XLMR 34.92 47.51 6.17
simcse-model-wangchanberta 36.29 48.96 6.09
simcse-model-phayathaibert 43.25 57.28 6.18
SCT-model-XLMR 28.51 40.84 16.29
SCT-model-wangchanberta 35.33 48.19 16.0
SCT-model-phayathaibert 37.52 51.02 15.8
SCT-Distil-model-XLMR 40.38 51.68 16.17
SCT-Distil-model-wangchanberta 39.43 50.61 16.04
SCT-Distil-model-phayathaibert 45.16 56.52 15.82
SCT-Distil-model-phayathaibert-bge-m3 64.80 74.46
ConGen-model-XLMR 43.11 55.51 16.4
ConGen-model-wangchanberta 41.06 53.31 15.98
ConGen-model-phayathaibert 44.34 55.77 15.97
ConGen-BGE_M3-model-phayathaibert 70.40 79.33 15.83
distiluse-base-multilingual-cased-v2 17.74 27.78 ✔️ 9.84
paraphrase-multilingual-mpnet-base-v2 38.20 49.65 ✔️ 16.22
BGE M-3 79.67 86.68 ✔️ 91.27
Cohere-embed-multilingual-v2.0 66.98 77.58 ✔️ XXX

TyDiQA

Base Model R@1 MRR@10 Supervised? Latency(second)
simcse-model-distil-m-bert 44.69 51.39 1.6
simcse-model-m-bert-thai-cased 45.09 52.37 2.46
simcse-model-XLMR 58.06 64.72 2.35
simcse-model-wangchanberta 62.65 70.02 2.32
simcse-model-phayathaibert 71.43 78.16 2.28
SCT-model-XLMR 49.28 58.62 3.15
SCT-model-wangchanberta 58.19 68.05 3.21
SCT-model-phayathaibert 63.43 71.73 3.21
SCT-Distil-model-XLMR 56.36 65.18 3.3
SCT-Distil-model-wangchanberta 56.23 65.18 3.18
SCT-Distil-model-phayathaibert 58.32 67.42 3.21
SCT-Distil-model-phayathaibert-bge-m3 78.37 84.01
ConGen-model-XLMR 60.29 68.56 3.28
ConGen-model-wangchanberta 59.11 67.42 3.19
ConGen-model-phayathaibert 59.24 67.69 3.15
ConGen-BGE_M3-model-phayathaibert 83.36 88.29 3.14
distiluse-base-multilingual-cased-v2 32.50 42.20 ✔️ 2.05
paraphrase-multilingual-mpnet-base-v2 54.39 63.12 ✔️ 3.16
BGE M-3 89.12 93.43 ✔️ 20.87
Cohere-embed-multilingual-v2.0 85.45 90.33 ✔️ XXX

Thank you for the many codes from

Acknowledgments:

  • Can: proofread
  • Charin: proofread + idea

1_3JJRwT1f2zTK1hx36-qXdg (1)