-
Notifications
You must be signed in to change notification settings - Fork 132
/
Copy pathassoc.pl
483 lines (393 loc) · 16.6 KB
/
assoc.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
/* Author: R.A.O'Keefe, L.Damas, V.S.Costa, Glenn Burgess,
Jiri Spitz and Jan Wielemaker
E-mail: [email protected]
WWW: http://www.swi-prolog.org
Copyright (c) 2004-2018, various people and institutions
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
:- module(assoc,
[ empty_assoc/1, % -Assoc
is_assoc/1, % +Assoc
assoc_to_list/2, % +Assoc, -Pairs
assoc_to_keys/2, % +Assoc, -List
assoc_to_values/2, % +Assoc, -List
gen_assoc/3, % ?Key, +Assoc, ?Value
get_assoc/3, % +Key, +Assoc, ?Value
get_assoc/5, % +Key, +Assoc0, ?Val0, ?Assoc, ?Val
list_to_assoc/2, % +List, ?Assoc
map_assoc/2, % :Goal, +Assoc
map_assoc/3, % :Goal, +Assoc0, ?Assoc
max_assoc/3, % +Assoc, ?Key, ?Value
min_assoc/3, % +Assoc, ?Key, ?Value
ord_list_to_assoc/2, % +List, ?Assoc
put_assoc/4, % +Key, +Assoc0, +Value, ?Assoc
del_assoc/4, % +Key, +Assoc0, ?Value, ?Assoc
del_min_assoc/4, % +Assoc0, ?Key, ?Value, ?Assoc
del_max_assoc/4 % +Assoc0, ?Key, ?Value, ?Assoc
]).
:- use_module(library(lists)).
/** Binary associations
Assocs are Key-Value associations implemented as a balanced binary tree
(AVL tree).
Authors: R.A.O'Keefe, L.Damas, V.S.Costa and Jan Wielemaker
*/
:- meta_predicate map_assoc(1, ?).
:- meta_predicate map_assoc(2, ?, ?).
%% empty_assoc(?Assoc) is semidet.
%
% Is true if Assoc is the empty association list.
empty_assoc(t).
%% assoc_to_list(+Assoc, -Pairs) is det.
%
% Translate Assoc to a list Pairs of Key-Value pairs. The keys
% in Pairs are sorted in ascending order.
assoc_to_list(Assoc, List) :-
assoc_to_list(Assoc, List, []).
assoc_to_list(t(Key,Val,_,L,R), List, Rest) :-
assoc_to_list(L, List, [Key-Val|More]),
assoc_to_list(R, More, Rest).
assoc_to_list(t, List, List).
%% assoc_to_keys(+Assoc, -Keys) is det.
%
% True if Keys is the list of keys in Assoc. The keys are sorted
% in ascending order.
assoc_to_keys(Assoc, List) :-
assoc_to_keys(Assoc, List, []).
assoc_to_keys(t(Key,_,_,L,R), List, Rest) :-
assoc_to_keys(L, List, [Key|More]),
assoc_to_keys(R, More, Rest).
assoc_to_keys(t, List, List).
%% assoc_to_values(+Assoc, -Values) is det.
%
% True if Values is the list of values in Assoc. Values are
% ordered in ascending order of the key to which they were
% associated. Values may contain duplicates.
assoc_to_values(Assoc, List) :-
assoc_to_values(Assoc, List, []).
assoc_to_values(t(_,Value,_,L,R), List, Rest) :-
assoc_to_values(L, List, [Value|More]),
assoc_to_values(R, More, Rest).
assoc_to_values(t, List, List).
%% is_assoc(+Assoc) is semidet.
%
% True if Assoc is an association list. This predicate checks
% that the structure is valid, elements are in order, and tree
% is balanced to the extent guaranteed by AVL trees. I.e.,
% branches of each subtree differ in depth by at most 1.
is_assoc(Assoc) :-
is_assoc(Assoc, _Min, _Max, _Depth).
is_assoc(t,X,X,0) :- !.
is_assoc(t(K,_,-,t,t),K,K,1) :- !, ground(K).
is_assoc(t(K,_,>,t,t(RK,_,-,t,t)),K,RK,2) :-
% Ensure right side Key is 'greater' than K
!, ground((K,RK)), K @< RK.
is_assoc(t(K,_,<,t(LK,_,-,t,t),t),LK,K,2) :-
% Ensure left side Key is 'less' than K
!, ground((LK,K)), LK @< K.
is_assoc(t(K,_,B,L,R),Min,Max,Depth) :-
is_assoc(L,Min,LMax,LDepth),
is_assoc(R,RMin,Max,RDepth),
% Ensure Balance matches depth
compare(Rel,RDepth,LDepth),
balance(Rel,B),
% Ensure ordering
ground((LMax,K,RMin)),
LMax @< K,
K @< RMin,
Depth is max(LDepth, RDepth)+1.
% Private lookup table matching comparison operators to Balance operators used in tree
balance(=,-).
balance(<,<).
balance(>,>).
%% gen_assoc(?Key, +Assoc, ?Value) is nondet.
%
% True if Key-Value is an association in Assoc. Enumerates keys in
% ascending order on backtracking.
gen_assoc(Key, Assoc, Value) :-
( ground(Key)
-> get_assoc(Key, Assoc, Value)
; gen_assoc_(Key, Assoc, Value)
).
gen_assoc_(Key, t(_,_,_,L,_), Val) :-
gen_assoc_(Key, L, Val).
gen_assoc_(Key, t(Key,Val,_,_,_), Val).
gen_assoc_(Key, t(_,_,_,_,R), Val) :-
gen_assoc_(Key, R, Val).
%% get_assoc(+Key, +Assoc, -Value) is semidet.
%
% True if Key-Value is an association in Assoc.
%
% Throws error: `type_error(assoc, Assoc)` if Assoc is not an association list.
get_assoc(Key, Assoc, Val) :-
must_be(assoc, Assoc),
get_assoc_(Key, Assoc, Val).
/*
:- if(current_predicate('$btree_find_node'/5)).
get_assoc_(Key, Tree, Val) :-
Tree \== t,
'$btree_find_node'(Key, Tree, 0x010405, Node, =),
arg(2, Node, Val).
:- else.
*/
get_assoc_(Key, t(K,V,_,L,R), Val) :-
compare(Rel, Key, K),
get_assoc(Rel, Key, V, L, R, Val).
get_assoc(=, _, Val, _, _, Val).
get_assoc(<, Key, _, Tree, _, Val) :-
get_assoc(Key, Tree, Val).
get_assoc(>, Key, _, _, Tree, Val) :-
get_assoc(Key, Tree, Val).
% :- endif.
%% get_assoc(+Key, +Assoc0, ?Val0, ?Assoc, ?Val) is semidet.
%
% True if Key-Val0 is in Assoc0 and Key-Val is in Assoc.
get_assoc(Key, t(K,V,B,L,R), Val, t(K,NV,B,NL,NR), NVal) :-
compare(Rel, Key, K),
get_assoc(Rel, Key, V, L, R, Val, NV, NL, NR, NVal).
get_assoc(=, _, Val, L, R, Val, NVal, L, R, NVal).
get_assoc(<, Key, V, L, R, Val, V, NL, R, NVal) :-
get_assoc(Key, L, Val, NL, NVal).
get_assoc(>, Key, V, L, R, Val, V, L, NR, NVal) :-
get_assoc(Key, R, Val, NR, NVal).
%% list_to_assoc(+Pairs, -Assoc) is det.
%
% Create an association from a list Pairs of Key-Value pairs. List
% must not contain duplicate keys.
%
% Throws error: `domain_error(unique_key_pairs, List)` if List contains duplicate keys
list_to_assoc(List, Assoc) :-
( List = [] -> Assoc = t
; keysort(List, Sorted),
( ord_pairs(Sorted)
-> length(Sorted, N),
list_to_assoc(N, Sorted, [], _, Assoc)
; throw(error(domain_error(unique_key_pairs, List), list_to_assoc/2))
)
).
list_to_assoc(1, [K-V|More], More, 1, t(K,V,-,t,t)) :- !.
list_to_assoc(2, [K1-V1,K2-V2|More], More, 2, t(K2,V2,<,t(K1,V1,-,t,t),t)) :- !.
list_to_assoc(N, List, More, Depth, t(K,V,Balance,L,R)) :-
N0 is N - 1,
RN is N0 div 2,
Rem is N0 mod 2,
LN is RN + Rem,
list_to_assoc(LN, List, [K-V|Upper], LDepth, L),
list_to_assoc(RN, Upper, More, RDepth, R),
Depth is LDepth + 1,
compare(B, RDepth, LDepth),
balance(B, Balance).
%% ord_list_to_assoc(+Pairs, -Assoc) is det.
%
% Assoc is created from an ordered list Pairs of Key-Value
% pairs. The pairs must occur in strictly ascending order of
% their keys.
%
% Throws error: `domain_error(key_ordered_pairs, List)` if pairs are not ordered.
ord_list_to_assoc(Sorted, Assoc) :-
( Sorted = [] -> Assoc = t
; ( ord_pairs(Sorted)
-> length(Sorted, N),
list_to_assoc(N, Sorted, [], _, Assoc)
; domain_error(key_ordered_pairs, Sorted)
)
).
%% ord_pairs(+Pairs) is semidet
%
% True if Pairs is a list of Key-Val pairs strictly ordered by key.
ord_pairs([K-_V|Rest]) :-
ord_pairs(Rest, K).
ord_pairs([], _K).
ord_pairs([K-_V|Rest], K0) :-
K0 @< K,
ord_pairs(Rest, K).
%% map_assoc(:Pred, +Assoc) is semidet.
%
% True if Pred(Value) is true for all values in Assoc.
map_assoc(Pred, T) :-
map_assoc_(T, Pred).
map_assoc_(t, _).
map_assoc_(t(_,Val,_,L,R), Pred) :-
map_assoc_(L, Pred),
call(Pred, Val),
map_assoc_(R, Pred).
%% map_assoc(:Pred, +Assoc0, ?Assoc) is semidet.
%
% Map corresponding values. True if Assoc is Assoc0 with Pred
% applied to all corresponding pairs of of values.
map_assoc(Pred, T0, T) :-
map_assoc_(T0, Pred, T).
map_assoc_(t, _, t).
map_assoc_(t(Key,Val,B,L0,R0), Pred, t(Key,Ans,B,L1,R1)) :-
map_assoc_(L0, Pred, L1),
call(Pred, Val, Ans),
map_assoc_(R0, Pred, R1).
%% max_assoc(+Assoc, -Key, -Value) is semidet.
%
% True if Key-Value is in Assoc and Key is the largest key.
max_assoc(t(K,V,_,_,R), Key, Val) :-
max_assoc(R, K, V, Key, Val).
max_assoc(t, K, V, K, V).
max_assoc(t(K,V,_,_,R), _, _, Key, Val) :-
max_assoc(R, K, V, Key, Val).
%% min_assoc(+Assoc, -Key, -Value) is semidet.
%
% True if Key-Value is in assoc and Key is the smallest key.
min_assoc(t(K,V,_,L,_), Key, Val) :-
min_assoc(L, K, V, Key, Val).
min_assoc(t, K, V, K, V).
min_assoc(t(K,V,_,L,_), _, _, Key, Val) :-
min_assoc(L, K, V, Key, Val).
%% put_assoc(+Key, +Assoc0, +Value, -Assoc) is det.
%
% Assoc is Assoc0, except that Key is associated with
% Value. This can be used to insert and change associations.
put_assoc(Key, A0, Value, A) :-
insert(A0, Key, Value, A, _).
insert(t, Key, Val, t(Key,Val,-,t,t), yes).
insert(t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged) :-
compare(Rel, K, Key),
insert(Rel, t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged).
insert(=, t(Key,_,B,L,R), _, V, t(Key,V,B,L,R), no).
insert(<, t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged) :-
insert(L, K, V, NewL, LeftHasChanged),
adjust(LeftHasChanged, t(Key,Val,B,NewL,R), left, NewTree, WhatHasChanged).
insert(>, t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged) :-
insert(R, K, V, NewR, RightHasChanged),
adjust(RightHasChanged, t(Key,Val,B,L,NewR), right, NewTree, WhatHasChanged).
adjust(no, Oldree, _, Oldree, no).
adjust(yes, t(Key,Val,B0,L,R), LoR, NewTree, WhatHasChanged) :-
table(B0, LoR, B1, WhatHasChanged, ToBeRebalanced),
rebalance(ToBeRebalanced, t(Key,Val,B0,L,R), B1, NewTree, _, _).
% balance where balance whole tree to be
% before inserted after increased rebalanced
table(- , left , < , yes , no ) :- !.
table(- , right , > , yes , no ) :- !.
table(< , left , - , no , yes ) :- !.
table(< , right , - , no , no ) :- !.
table(> , left , - , no , no ) :- !.
table(> , right , - , no , yes ) :- !.
%% del_min_assoc(+Assoc0, ?Key, ?Val, -Assoc) is semidet.
%
% True if Key-Value is in Assoc0 and Key is the smallest key.
% Assoc is Assoc0 with Key-Value removed. Warning: This will
% succeed with _no_ bindings for Key or Val if Assoc0 is empty.
del_min_assoc(Tree, Key, Val, NewTree) :-
del_min_assoc(Tree, Key, Val, NewTree, _DepthChanged).
del_min_assoc(t(Key,Val,_B,t,R), Key, Val, R, yes) :- !.
del_min_assoc(t(K,V,B,L,R), Key, Val, NewTree, Changed) :-
del_min_assoc(L, Key, Val, NewL, LeftChanged),
deladjust(LeftChanged, t(K,V,B,NewL,R), left, NewTree, Changed).
%% del_max_assoc(+Assoc0, ?Key, ?Val, -Assoc) is semidet.
%
% True if Key-Value is in Assoc0 and Key is the greatest key.
% Assoc is Assoc0 with Key-Value removed. Warning: This will
% succeed with _no_ bindings for Key or Val if Assoc0 is empty.
del_max_assoc(Tree, Key, Val, NewTree) :-
del_max_assoc(Tree, Key, Val, NewTree, _DepthChanged).
del_max_assoc(t(Key,Val,_B,L,t), Key, Val, L, yes) :- !.
del_max_assoc(t(K,V,B,L,R), Key, Val, NewTree, Changed) :-
del_max_assoc(R, Key, Val, NewR, RightChanged),
deladjust(RightChanged, t(K,V,B,L,NewR), right, NewTree, Changed).
%% del_assoc(+Key, +Assoc0, ?Value, -Assoc) is semidet.
%
% True if Key-Value is in Assoc0. Assoc is Assoc0 with
% Key-Value removed.
del_assoc(Key, A0, Value, A) :-
delete(A0, Key, Value, A, _).
% delete(+Subtree, +SearchedKey, ?SearchedValue, ?SubtreeOut, ?WhatHasChanged)
delete(t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged) :-
compare(Rel, K, Key),
delete(Rel, t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged).
% delete(+KeySide, +Subtree, +SearchedKey, ?SearchedValue, ?SubtreeOut, ?WhatHasChanged)
% KeySide is an operator {<,=,>} indicating which branch should be searched for the key.
% WhatHasChanged {yes,no} indicates whether the NewTree has changed in depth.
delete(=, t(Key,Val,_B,t,R), Key, Val, R, yes) :- !.
delete(=, t(Key,Val,_B,L,t), Key, Val, L, yes) :- !.
delete(=, t(Key,Val,>,L,R), Key, Val, NewTree, WhatHasChanged) :-
% Rh tree is deeper, so rotate from R to L
del_min_assoc(R, K, V, NewR, RightHasChanged),
deladjust(RightHasChanged, t(K,V,>,L,NewR), right, NewTree, WhatHasChanged),
!.
delete(=, t(Key,Val,B,L,R), Key, Val, NewTree, WhatHasChanged) :-
% Rh tree is not deeper, so rotate from L to R
del_max_assoc(L, K, V, NewL, LeftHasChanged),
deladjust(LeftHasChanged, t(K,V,B,NewL,R), left, NewTree, WhatHasChanged),
!.
delete(<, t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged) :-
delete(L, K, V, NewL, LeftHasChanged),
deladjust(LeftHasChanged, t(Key,Val,B,NewL,R), left, NewTree, WhatHasChanged).
delete(>, t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged) :-
delete(R, K, V, NewR, RightHasChanged),
deladjust(RightHasChanged, t(Key,Val,B,L,NewR), right, NewTree, WhatHasChanged).
deladjust(no, OldTree, _, OldTree, no).
deladjust(yes, t(Key,Val,B0,L,R), LoR, NewTree, RealChange) :-
deltable(B0, LoR, B1, WhatHasChanged, ToBeRebalanced),
rebalance(ToBeRebalanced, t(Key,Val,B0,L,R), B1, NewTree, WhatHasChanged, RealChange).
% balance where balance whole tree to be
% before deleted after changed rebalanced
deltable(- , right , < , no , no ) :- !.
deltable(- , left , > , no , no ) :- !.
deltable(< , right , - , yes , yes ) :- !.
deltable(< , left , - , yes , no ) :- !.
deltable(> , right , - , yes , no ) :- !.
deltable(> , left , - , yes , yes ) :- !.
% It depends on the tree pattern in avl_geq whether it really decreases.
% Single and double tree rotations - these are common for insert and delete.
/* The patterns (>)-(>), (>)-( <), ( <)-( <) and ( <)-(>) on the LHS
always change the tree height and these are the only patterns which can
happen after an insertion. That's the reason why we can use a table only to
decide the needed changes.
The patterns (>)-( -) and ( <)-( -) do not change the tree height. After a
deletion any pattern can occur and so we return yes or no as a flag of a
height change. */
rebalance(no, t(K,V,_,L,R), B, t(K,V,B,L,R), Changed, Changed).
rebalance(yes, OldTree, _, NewTree, _, RealChange) :-
avl_geq(OldTree, NewTree, RealChange).
avl_geq(t(A,VA,>,Alpha,t(B,VB,>,Beta,Gamma)),
t(B,VB,-,t(A,VA,-,Alpha,Beta),Gamma), yes) :- !.
avl_geq(t(A,VA,>,Alpha,t(B,VB,-,Beta,Gamma)),
t(B,VB,<,t(A,VA,>,Alpha,Beta),Gamma), no) :- !.
avl_geq(t(B,VB,<,t(A,VA,<,Alpha,Beta),Gamma),
t(A,VA,-,Alpha,t(B,VB,-,Beta,Gamma)), yes) :- !.
avl_geq(t(B,VB,<,t(A,VA,-,Alpha,Beta),Gamma),
t(A,VA,>,Alpha,t(B,VB,<,Beta,Gamma)), no) :- !.
avl_geq(t(A,VA,>,Alpha,t(B,VB,<,t(X,VX,B1,Beta,Gamma),Delta)),
t(X,VX,-,t(A,VA,B2,Alpha,Beta),t(B,VB,B3,Gamma,Delta)), yes) :-
!,
table2(B1, B2, B3).
avl_geq(t(B,VB,<,t(A,VA,>,Alpha,t(X,VX,B1,Beta,Gamma)),Delta),
t(X,VX,-,t(A,VA,B2,Alpha,Beta),t(B,VB,B3,Gamma,Delta)), yes) :-
!,
table2(B1, B2, B3).
table2(< ,- ,> ).
table2(> ,< ,- ).
table2(- ,- ,- ).
must_be(assoc, X) :-
( X == t
-> true
; compound(X),
functor(X, t, 5)
), !.
must_be(assoc, X) :-
throw(error(type_error(assoc, X), _)).