-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTabuSearch.cpp
439 lines (351 loc) · 11.2 KB
/
TabuSearch.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
#include "TabuSearch.h"
#include <algorithm>
#include <iostream>
#include <ctime>
#include <limits>
#include <numeric>
#define cityCounts 201
#define capcity 600
TabuSearch::TabuSearch(VehicleRouteProblem& t) :
vrp(t)
{
}
TabuSearch::~TabuSearch()
{
}
void TabuSearch::startAlgorithm(int tabu_list_size, int neighbours_count, int steps_without_change, int steps_with_random_neighbourhood)
{
//std::cout << "parameters:" << tabu_list_size << "," << neighbours_count << "," << steps_without_change << "," << steps_with_random_neighbourhood << "\n";
if (vrp.getCitiesCount() == 0) return;
srand(static_cast<unsigned int>(time(NULL)));
double current_cost;
std::vector <int> current_solution(generateRandomSolution());//给出大小200的解序列, 初始化给current_solution
current_cost = countBestCost(current_solution);
the_best_solution = current_solution;
min_cost = current_cost;
std::pair<int, int> swaped_cities;
std::pair<int, int> saved_swap;
std::vector <int> the_best_neighbour;
the_best_neighbour = the_best_solution;
std::vector <int> neighbour;
double neighbour_cost;
double the_best_neighbour_cost;
int steps = 0;
int change_neighbourhood_count = 0;
do {
std::cout << "随机次数:" << change_neighbourhood_count << std::endl;
the_best_neighbour_cost = std::numeric_limits<double>::max();
//多次交换,从每次交换中寻找局部最优解
for (int i = 0; i < neighbours_count; i++)
{
neighbour = current_solution;
swaped_cities = swapTwoRandomCities(neighbour);//neighbor已经更新
neighbour_cost = countBestCost(neighbour);
if (neighbour_cost < the_best_neighbour_cost && checkTabu(swaped_cities, neighbour, neighbour_cost))
{
the_best_neighbour_cost = neighbour_cost;
//std::cout << the_best_neighbour_cost << std::endl;
the_best_neighbour = neighbour;
saved_swap = swaped_cities;
}
}
//更新当前局部最优解
current_solution = the_best_neighbour;
current_cost = the_best_neighbour_cost;
//如果找到更优解,更新全局最优解,步数清零
if (current_cost < min_cost)
{
the_best_solution = current_solution;
min_cost = current_cost;
std::cout <<"find a btter global solution:"<< min_cost << std::endl;
steps = 0;
}
//更新禁忌表
if (tabu_list.size() > tabu_list_size)
{
tabu_list.pop_front();
}
tabu_list.push_back(saved_swap);
steps++;
std::cout << "连续没有比最优解"<<min_cost<<"小的次数:" <<steps<< std::endl;
//如果在一定步骤之内没有找到更优秀的解,即陷入局部最优解,再次随机,再次循环以上步骤
if (steps > steps_without_change)
{
current_solution = generateRandomSolution();
current_cost = countBestCost(current_solution);
change_neighbourhood_count++;
steps = 0;
}
} while (!kbhit());
//while (change_neighbourhood_count < steps_with_random_neighbourhood);
}
std::vector <int> TabuSearch::generateRandomSolution()
{
std::vector <int> solution;
for (int i = 1; i < cityCounts; i++)
{
solution.push_back(i);
}
std::random_shuffle(solution.begin(), solution.end());
return solution;
}
double TabuSearch::countCost(std::vector<int> path)
{
std::vector<double> cost(1,0) ;
std::vector<double> carryLoad(1, 0);
std::vector<int> tem;
int j = 0;
double sumCost = 0;
//清空解结构
pathStruc.clear();
std::vector<std::vector<int>>().swap(pathStruc);
carryLoad.at(0) += vrp.cityDemand.at(path[0]);
//按容量贪婪原则分配每辆车的路径
for (int i = 0; i < cityCounts-2; i++)
{
if (carryLoad.at(j)<=capcity)
{
cost.at(j) += vrp.getEdgeCost(path[i], path[i + 1]);
carryLoad.at(j) += vrp.cityDemand.at(path[i+1]);
tem.push_back(path[i]);
}
else
{
cost.at(j) = cost.at(j) - vrp.getEdgeCost(path[i], path[i + 1]);
carryLoad.at(j) -= vrp.cityDemand.at(path[i + 1]);
tem.pop_back();
pathStruc.push_back(tem);
//清空tem,准备装载下一车辆路径
tem.clear();
std::vector<int>().swap(tem);
i = i - 1;
j++;
cost.push_back(0);
carryLoad.push_back(0);
carryLoad.at(j) = vrp.cityDemand.at(path[i]);
}
}
pathStruc.push_back(tem);
//计算所有车路径距离之和
for (int i = 0; pathStruc.begin()+i!=pathStruc.end(); i++)
{
sumCost += vrp.getEdgeCost(0, pathStruc.at(i).front())+ vrp.getEdgeCost(0, pathStruc.at(i).back()) + cost.at(i);
}
return sumCost;
}
double TabuSearch::countBestCost(std::vector<int> path)
{
double bestCost = 15000;// std::numeric_limits<double>::max();
double currentCost;
std::vector<std::vector<int>>bestPathStruc;
for (int i = 0; i <abs(0.00005*bestCost*bestCost-1.7786*bestCost+14278); i++)
{
std::vector<std::vector<int>>().swap(pathStruc);
currentCost = countCostOneRandom(path);
if (currentCost < bestCost){
bestCost = currentCost;
bestPathStruc = pathStruc;
}
}
//std::cout << "random best cost:" << bestCost << std::endl;
pathStruc = bestPathStruc;
return bestCost;
}
//每辆车在容量附近但随机的减少,使得车辆容量不饱和
double TabuSearch::countCostOneRandom(std::vector<int> path)
{
std::vector<double> cost(1, 0);
std::vector<double> carryLoad(1, 0);
std::vector<int> tem;
int j = 0;
double sumCost = 0;
//清空解结构
pathStruc.clear();
std::vector<std::vector<int>>().swap(pathStruc);
carryLoad.at(0) += vrp.cityDemand.at(path[0]);
//按容量贪婪原则分配每辆车的路径
for (int i = 0; i < cityCounts - 2; i++)
{
if (carryLoad.at(j) <= capcity)
{
cost.at(j) += vrp.getEdgeCost(path[i], path[i + 1]);
carryLoad.at(j) += vrp.cityDemand.at(path[i + 1]);
tem.push_back(path[i]);
}
else
{
int randomMinus = 0;
randomMinus = 1+rand() % (int)(0.2*tem.size());
for (int k = 0; k < randomMinus; k++)
{
cost.at(j) = cost.at(j) - vrp.getEdgeCost(path[i], path[i + 1]);
carryLoad.at(j) -= vrp.cityDemand.at(path[i + 1]);
tem.pop_back();
i--;
}
pathStruc.push_back(tem);
//清空tem,准备装载下一车辆路径
tem.clear();
std::vector<int>().swap(tem);
j++;
cost.push_back(0);
carryLoad.push_back(0);
carryLoad.at(j) = vrp.cityDemand.at(path[i]);
}
}
pathStruc.push_back(tem);
//计算所有车路径距离之和
for (int i = 0; pathStruc.begin() + i != pathStruc.end(); i++)
{
sumCost += vrp.getEdgeCost(0, pathStruc.at(i).front()) + vrp.getEdgeCost(0, pathStruc.at(i).back()) + cost.at(i);
}
return sumCost;
}
//加入随机元素,在最优解和躲避梯度陡增值之间权衡, 给出在当前序列下一个最优解
double TabuSearch::countCostWithRandom(std::vector<int> path)
{
std::vector<double> cost(1, 0);
double sumCost = 0;
double bestSumCost = std::numeric_limits<double>::max();
double totalCostWithoutZero=0;
double costThreshold = 5.0;
std::vector<int> conditateBackCity;
std::vector<int> temPath;
std::vector<int> carPath;
std::vector<std::vector<int>> randompathStruc;
std::vector<std::vector<int>> temPathStruc;
//清空解结构
pathStruc.clear();
std::vector<std::vector<int>>().swap(pathStruc);
countCost(path);
//加入候选点
for (int i = 0; i < cityCounts-2; i++)
{
totalCostWithoutZero += vrp.getEdgeCost(path.at(i), path.at(i + 1));
}
for (int i = 0; i < cityCounts-2; i++)
{
//加入距离下一城市路程长于平均值加系数的节点 和 该点至下一点距离大于返回的节点
if (vrp.getEdgeCost(path[i], path[i + 1]) > costThreshold*totalCostWithoutZero / (cityCounts - 1) || vrp.getEdgeCost(path[i], path[i + 1]) > 10*vrp.getEdgeCost(path[i], 0))
{
conditateBackCity.push_back(i);
}
}
int cityID = -1;
for (int i = 0; i < pathStruc.size(); i++)
{
cityID += pathStruc.at(i).size();
conditateBackCity.push_back(cityID);
}
//重新分割解
//std::cout <<"候选换车点数量"<< conditateBackCity.size() << std::endl;
//system("pause");
for (int j = pathStruc.size(); j < pathStruc.size()+2; j++)//尝试不同的车辆数
{
//std::cout << "车辆数:" << j << std::endl;
for (int i = 0; i < 10*conditateBackCity.size(); i++)//尝试挑选不同的候选返程点
{
//std::cout << "不同返程点:" << sumCost << std::endl;
std::vector<int>().swap(temPath);
temPath=path;
sumCost = 0;
std::vector<double>().swap(cost);
cost.push_back(0);
//记录该解的解结构,评估该解的cost
std::vector<std::vector<int>>().swap(randompathStruc);
std::random_shuffle(conditateBackCity.begin(), conditateBackCity.end());
//插入换车点
for (int k = 0; k < j-1; k++)
{
temPath.insert(temPath.begin() + conditateBackCity.at(k)+1,-1);
}
//解析出各车辆的解
int carID = 0;
for (int k = 0; k< temPath.size(); k++)
{
if (temPath.at(k)!=(-1))
{
carPath.push_back(temPath.at(k));
}
else
{
randompathStruc.push_back(carPath);
std::vector<int>().swap(carPath);
}
if (k<cityCounts+j-3)
{
if (temPath.at(k + 1) != (-1))
{
cost.at(carID) += vrp.getEdgeCost(temPath[k], temPath[k + 1]);
}
else
{
carID++;
cost.push_back(0);
}
}
}
randompathStruc.push_back(carPath);
std::vector<int>().swap(carPath);
//计算所有车路径距离之和
for (int i = 0; i<randompathStruc.size(); i++)
{
if (randompathStruc.at(i).size()!=0)
{
if (vrp.getEdgeCost(0, randompathStruc.at(i).front()) + vrp.getEdgeCost(0, randompathStruc.at(i).back()) + cost.at(i)>capcity)
{
sumCost = std::numeric_limits<double>::max();
break;
}
sumCost += vrp.getEdgeCost(0, randompathStruc.at(i).front()) + vrp.getEdgeCost(0, randompathStruc.at(i).back()) + cost.at(i);
}
}
if (sumCost<bestSumCost)
{
pathStruc.swap(randompathStruc);
bestSumCost = sumCost;
std::cout << "随机车辆数最优解:" << bestSumCost << std::endl;
}
}
}
return bestSumCost;
}
std::pair<int, int> TabuSearch::swapTwoRandomCities(std::vector<int>& path)
{
int firstPosition = rand() % path.size();
int secondPosition;
do {
secondPosition = rand() % path.size();
} while (firstPosition == secondPosition);
std::pair<int, int> swaped_cities;
if (firstPosition > secondPosition)
{
swaped_cities.first = path.at(secondPosition);
swaped_cities.second = path.at(firstPosition);
}
else
{
swaped_cities.first = path.at(firstPosition);
swaped_cities.second = path.at(secondPosition);
}
int buffor = path.at(firstPosition);
path.at(firstPosition) = path.at(secondPosition);
path.at(secondPosition) = buffor;
return swaped_cities;
}
bool TabuSearch::checkTabu(std::pair<int, int>& swaped_cities, std::vector<int>& path, double neighbour_cost)
{
std::list<std::pair<int, int> >::iterator list_iterator = tabu_list.begin();
while (list_iterator != tabu_list.end())
{
if (swaped_cities.first == list_iterator->second || swaped_cities.second == list_iterator->first)//判断是否有某一城市又被向原来的方向交换
{
int first_element_index = std::find(path.begin(), path.end(), list_iterator->first) - path.begin();
int second_element_index = std::find(path.begin(), path.end(), list_iterator->second) - path.begin();
if (first_element_index < second_element_index && neighbour_cost > min_cost)
return false;
}
list_iterator++;
}
return true;
}