forked from iacercalixto/MultimodalNMT
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathextract_image_features.py
executable file
·172 lines (142 loc) · 7.52 KB
/
extract_image_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Derived from https://github.com/jazzsaxmafia/show_attend_and_tell.tensorflow/blob/master/make_flickr_dataset.py
# Also from https://github.com/elliottd/satyrid/blob/master/make_dataset.py
import numpy as np
import os
import tables
import argparse
import torch
import torch.nn as nn
from onmt.PretrainedCNNModels import PretrainedCNN
def get_cnn_features(image_list, split, batch_size, dataset_name, pretrained_cnn, pretrained_cnn_name):
""" Function that does the actual job.
Creates a hdf5 compressed file, iterates a list of images in minibatches,
extracts both global and local features for these images and saves these
features into the hdf5 file.
"""
# create hdf5 file
hdf5_path = "%s_%s_%s_%s" % (dataset_name, split, pretrained_cnn_name, "cnn_features.hdf5")
hdf5_file = tables.open_file(hdf5_path, mode='w')
# make sure feature sizes are as expected by underlying CNN architectures
if pretrained_cnn_name.startswith('vgg'):
global_features_size = 4096
local_features_size = 512 * 7 * 7
else:
global_features_size = 2048
local_features_size = 2048 * 7 * 7
# use compression in the hdf5 file
filters = tables.Filters(complevel=5, complib='blosc')
# create storage for local features
local_features_storage = hdf5_file.create_earray(hdf5_file.root, 'local_feats',
tables.Float32Atom(),
shape=(0, local_features_size),
filters=filters,
expectedrows=len(image_list))
# create storage for global features
global_features_storage = hdf5_file.create_earray(hdf5_file.root, 'global_feats',
tables.Float32Atom(),
shape=(0, global_features_size),
filters=filters,
expectedrows=len(image_list))
# iterate image list in minibatches
for start, end in zip(range(0, len(image_list)+batch_size, batch_size),
range(batch_size, len(image_list)+batch_size, batch_size)):
if start%200==0:
print("Processing %s images %d-%d / %d"
% (split, start, end, len(image_list)))
batch_list_fnames = image_list[start:end]
batch_list = []
# load/preprocess images for mini-batch
for entry in batch_list_fnames:
batch_list.append(
pretrained_cnn.load_image_from_path(entry))
# create minibatch from list of variables
# i.e., condense the list of image input variables into a mini-batch
input_imgs_minibatch = torch.cat( batch_list, dim=0 )
input_imgs_minibatch = input_imgs_minibatch.cuda()
#print "input_imgs_minibatch.size(): ", input_imgs_minibatch.size()
# forward pass using pre-trained CNN, twice for each minibatch
lfeats = pretrained_cnn.get_local_features(input_imgs_minibatch)
gfeats = pretrained_cnn.get_global_features(input_imgs_minibatch)
#print("lfeats.size(): ", lfeats.size())
#print "gfeats.size(): ", gfeats.size()
# transpose and flatten feats to prepare for reshape
lfeats = np.array(list(map(lambda x: x.T.flatten(), lfeats.data.cpu().numpy())))
# flatten feature vector
gfeats = np.array(list(map(lambda x: x.flatten(), gfeats.data.cpu().numpy())))
local_features_storage.append(lfeats)
global_features_storage.append(gfeats)
print("Finished processing %d images" % len(local_features_storage))
hdf5_file.close()
def load_fnames_into_dict(fh, split, path_to_images):
""" Read image file names from a file into a dictionary."""
data = dict()
data['files'] = []
num = 0
# loop over the data
for img in fh:
img_path = "%s/%s"%(path_to_images,img.strip())
data['files'].append(img_path)
num += 1
print("%s: collected %d images"%(split, len(data['files'])))
return data
def build_pretrained_cnn(pretrained_cnn_name):
""" Uses pytorch/cadene to load pre-trained CNN. """
cnn = PretrainedCNN(pretrained_cnn_name)
cnn.model = cnn.model.cuda()
return cnn
def make_dataset(args):
cnn = build_pretrained_cnn(args.pretrained_cnn)
# get the filenames of the images
data = dict()
if 'train' in args.splits:
with open(args.train_fnames, 'r') as fh:
data['train'] = load_fnames_into_dict(fh, 'train', args.images_path)
if 'valid' in args.splits:
with open(args.valid_fnames, 'r') as fh:
data['valid'] = load_fnames_into_dict(fh, 'valid', args.images_path)
if 'test' in args.splits:
with open(args.test_fnames, 'r') as fh:
data['test'] = load_fnames_into_dict(fh, 'test', args.images_path)
for split in data:
#files = ['%s/%s' % (args.images_path, x) for x in data[split]['files']]
files = data[split]['files']
get_cnn_features(files, split, args.batch_size, args.dataset_name, cnn, args.pretrained_cnn)
print("Finished!")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Create the dataset bundles to train or test a model (ImgD, ImgE and ImgW).")
parser.add_argument("--dataset_name", default="flickr30k",
help="""Dataset name used to create output files.""")
parser.add_argument("--splits", default="train,valid,test",
help="Comma-separated list of the splits to process")
parser.add_argument("--batch_size", type=int, default=20,
help="Minibatch size for processing images")
parser.add_argument("--images_path", type=str,
help="Path to the directory containing the images",
default="/home/icalixto/resources/multi30k/images")
parser.add_argument("--pretrained_cnn", type=str, required=True,
choices=['resnet50','resnet101','resnet152','fbresnet152','vgg19','vgg19_bn'],
help="""Name of the pre-trained CNN model available in
https://github.com/Cadene/pretrained-models.pytorch""")
parser.add_argument("--train_fnames", type=str,
default="/home/icalixto/tools/"+
"lium-cvc-wmt17-mmt/data/train_images.txt",
help="""File containing a list with training image file names.""")
parser.add_argument("--valid_fnames", type=str,
default="/home/icalixto/tools/"+
"lium-cvc-wmt17-mmt/data/val_images.txt",
help="""File containing a list with validation image file names.""")
parser.add_argument("--test_fnames", type=str,
default="/home/icalixto/tools/"+
"lium-cvc-wmt17-mmt/data/test2016_images.txt",
help="""File containing a list with test image file names.""")
parser.add_argument("--gpuid", type=int, required=True)
arguments = parser.parse_args()
# make sure splits are as expected
splits = arguments.splits.split(",")
valid_splits = ['train', 'valid', 'test']
assert(all([s in valid_splits for s in splits])), \
'One invalid split was found. Valid splits are: %s'%(
valid_splits)
arguments.splits = splits
make_dataset(arguments)