-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathSoftmaxCosineSim.py
93 lines (78 loc) · 3.62 KB
/
SoftmaxCosineSim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# ==============================================================================
# Code modified from NT-XENT-loss:
# https://github.com/google-research/simclr/blob/master/objective.py
# ==============================================================================
# coding=utf-8
# Copyright 2020 The SimCLR Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific simclr governing permissions and
# limitations under the License.
# ==============================================================================
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.activations import softmax
from swish import swish
class SoftmaxCosineSim(keras.layers.Layer):
"""Custom Keras layer: takes all z-projections as input and calculates
output matrix which needs to match to [I|O|I|O], where
I = Unity matrix of size (batch_size x batch_size)
O = Zero matrix of size (batch_size x batch_size)
"""
def __init__(self, batch_size, feat_dim, **kwargs):
super(SoftmaxCosineSim, self).__init__()
self.batch_size = batch_size
self.feat_dim = feat_dim
self.units = (batch_size, 4 * feat_dim)
self.input_dim = [(None, feat_dim)] * (batch_size * 2)
self.temperature = 0.1
self.LARGE_NUM = 1e9
def get_config(self):
config = super().get_config().copy()
config.update(
{
"batch_size": self.batch_size,
"feat_dim": self.feat_dim,
"units": self.units,
"input_dim": self.input_dim,
"temperature": self.temperature,
"LARGE_NUM": self.LARGE_NUM,
}
)
return config
def call(self, inputs):
z1 = []
z2 = []
for index in range(self.batch_size):
# 0-index assumes that batch_size in generator is equal to 1
z1.append(tf.math.l2_normalize(inputs[index][0], -1))
z2.append(
tf.math.l2_normalize(inputs[self.batch_size + index][0], -1)
)
# Gather hidden1/hidden2 across replicas and create local labels.
z1_large = z1
z2_large = z2
masks = tf.one_hot(tf.range(self.batch_size), self.batch_size)
# Products of vectors of same side of network (z_i), count as negative examples
# Values on the diagonal are put equal to a very small value
# -> exclude product between 2 identical values, no added value
logits_aa = tf.matmul(z1, z1_large, transpose_b=True) / self.temperature
logits_aa = logits_aa - masks * self.LARGE_NUM
logits_bb = tf.matmul(z2, z2_large, transpose_b=True) / self.temperature
logits_bb = logits_bb - masks * self.LARGE_NUM
# Similarity between two transformation sides of the network (z_i and z_j)
# -> diagonal should be as close as possible to 1
logits_ab = tf.matmul(z1, z2_large, transpose_b=True) / self.temperature
logits_ba = tf.matmul(z2, z1_large, transpose_b=True) / self.temperature
part1 = softmax(tf.concat([logits_ab, logits_aa], 1))
part2 = softmax(tf.concat([logits_ba, logits_bb], 1))
output = tf.concat([part1, part2], 1)
return output