diff --git a/src/misc.f90 b/src/misc.f90 index 30254ed..efc6fd8 100644 --- a/src/misc.f90 +++ b/src/misc.f90 @@ -22,7 +22,7 @@ module misc #endif use precision, only: r128, r64, i64 - use params, only: kB, twopi + use params, only: kB, twopi, pi implicit none @@ -1653,4 +1653,40 @@ subroutine subtitle(text) string2print(75 - length + 1 : 75) = text if(this_image() == 1) write(*,'(A75)') string2print end subroutine subtitle + + subroutine Hilbert_transform(fx, Hfx) + !! Does Hilbert tranform for a given function + !! Ref - EQ (4)3, R. Balito et. al. + !! "An algorithm for fast Hilbert transform of real functions" + + real(r64), intent(in) :: fx(:) + real(r64), allocatable, intent(out) :: Hfx(:) + ! Local variables + integer :: n, k, nfx + real(r64) :: term2, term3, b + + nfx = size(fx) + allocate(Hfx(nfx)) + ! Hilbert function is zero at the edges + Hfx(1) = 0.0_r64 + Hfx(nfx) = 0.0_r64 + ! Note: In the reference, we have N + 1 points and indexing is 0-based + ! whereas here we have N points and indexing is 1-based + do k = 1, nfx - 2 ! Run over the internal points + term2 = 0.0_r64 ! 2nd term in Bilato Eq. 4 + term3 = 0.0_r64 ! 3rd term in Bilato Eq. 4 + + do n = 1, nfx - 2 - k ! Partial sum over internal points + b = log((n + 1.0_r64)/n) + term2 = term2 - (1.0_r64 - (n + 1.0_r64)*b)*fx(k + n + 1) + & + (1.0_r64 - n*b)*fx(k + n + 2) + end do + do n = 1, k - 1 ! Partial sum over internal points + b = log((n + 1.0_r64)/n) + term3 = term3 + (1.0_r64 - (n + 1.0_r64)*b)*fx(k - n + 1) - & + (1.0_r64 - n*b)*fx(k - n) + end do + Hfx(k + 1) = -(fx(k + 2) - fx(k) + term2 + term3)/pi + end do + end subroutine Hilbert_transform end module misc diff --git a/src/screening.f90 b/src/screening.f90 index 4734fcb..2caaa40 100644 --- a/src/screening.f90 +++ b/src/screening.f90 @@ -7,7 +7,8 @@ module screening_module use numerics_module, only: numerics use misc, only: linspace, mux_vector, binsearch, Fermi, print_message, & compsimps, twonorm, write2file_rank2_real, write2file_rank1_real, & - distribute_points, sort, qdist, operator(.umklapp.), Bose + distribute_points, sort, qdist, operator(.umklapp.), Bose, & + Hilbert_transform use wannier_module, only: wannier use delta, only: delta_fn, get_delta_fn_pointer @@ -58,53 +59,6 @@ subroutine calculate_qTF(crys, el) end if end subroutine calculate_qTF - subroutine Hilbert_transform(f, Hf) - !! Does Hilbert tranform of spectral head of bare polarizability - !! Ref - EQ (4), R. Balito et. al. - !! - !! Hf H.f(x), the Hilbert transform - !! f(x) the function - - real(r64), intent(in) :: f(:) - real(r64), allocatable, intent(out) :: Hf(:) - - ! Locals - real(r64) :: term2, term3, term1, b - integer(i64) :: nxs, k, n - - !Number points on domain grid - nxs = size(f) - - allocate(Hf(nxs)) - - !Assume that f vanishes at the edges, and Hf also - Hf(1) = 0.0_r64 - Hf(nxs) = 0.0_r64 - - do k = 2, nxs - 1 !Run over the internal points - term2 = 0.0_r64 !2nd term in Bilato Eq. 4 - term3 = 0.0_r64 !3rd term in Bilato Eq. 4 - - do n = 2, nxs - 1 - k !Partial sum over internal points - b = log((n + 1.0_r64)/n) - - term2 = term2 - (1.0_r64 - (n + 1.0_r64)*b)*f(k + n) + & - (1.0_r64 - n*b)*f(k + n + 1) - end do - - do n = 2, k - 2 !Partial sum over internal points - b = log((n + 1.0_r64)/n) - - term3 = term3 + (1.0_r64 - (n + 1.0_r64)*b)*f(k - n) - & - (1.0_r64 - n*b)*f(k - n - 1) - end do - - term1 = f(k + 1) - f(k - 1) - - Hf(k) = (-1.0_r64/pi)*(term1 + term2 + term3) - end do - end subroutine Hilbert_transform - !!$ subroutine head_polarizability_real_3d_T(Reeps_T, Omegas, spec_eps_T, Hilbert_weights_T) !!$ !! Head of the bare real polarizability of the 3d Kohn-Sham system using !!$ !! Hilbert transform for a given set of temperature-dependent quantities. diff --git a/test/test_misc.f90 b/test/test_misc.f90 index 5cab0e4..ac254e0 100644 --- a/test/test_misc.f90 +++ b/test/test_misc.f90 @@ -7,12 +7,12 @@ program test_misc twonorm, binsearch, mux_vector, demux_vector, interpolate, coarse_grained, & unique, linspace, compsimps, mux_state, demux_state, demux_mesh, expm1, & Fermi, Bose, Pade_continued, precompute_interpolation_corners_and_weights, & - interpolate_using_precomputed, operator(.umklapp.), shrink + interpolate_using_precomputed, operator(.umklapp.), shrink, Hilbert_transform implicit none integer :: itest - integer, parameter :: num_tests = 28 + integer, parameter :: num_tests = 32 type(testify) :: test_array(num_tests), tests_all integer(i64) :: index, quotient, remainder, int_array(5), v1(3), v2(3), & v1_muxed, v2_muxed, ik, ik1, ik2, ik3, ib1, ib2, ib3, wvmesh(3), & @@ -23,6 +23,9 @@ program test_misc real_array(5), result, q1(3, 4), q2(3, 4), q3(3, 4) real(r64), allocatable :: integrand(:), domain(:), im_axis(:), real_func(:), & widc(:, :), f_coarse(:), f_interp(:), array_of_reals(:) + real(r64), allocatable :: hfx1_even(:), hfx1_odd(:), hfx2_even(:), hfx2_odd(:), & + ind_even(:), ind_odd(:), x_even(:), x_odd(:), xmin, xmax + integer(i64) :: n_even, n_odd print*, '<>' @@ -334,8 +337,78 @@ program test_misc call shrink(array_of_reals, 2_i64) call test_array(itest)%assert(array_of_reals, [1, 2]*1.0_r64) + ! Hilbert transform tests (H) + ! fx1 -> function 1, fx2 -> function 2 + ! hfx1_even stores hilbert transform calculated for fx1, and for even number + ! of points + xmin = -30.0 + xmax = 30.0 + n_even = 4000 + n_odd = 4001 + ! ind_even are indices to compare in case of even number of points + ! ind_odd are indices to compare in case of odd number of points + allocate(ind_even(6),ind_odd(5)) + ind_even = [801, 1201, 1601, 2001, 2401, 2801] + ind_odd = [889, 1333, 1777, 2221, 2665] + + itest = itest + 1 + test_array(itest) = testify("Hilbert transform: f(x) = 1/(1 + x^2), even points") + allocate(x_even(n_even), hfx1_even(n_even)) + call linspace(x_even, xmin, xmax, n_even) + call Hilbert_transform(fx1(x_even), hfx1_even) + call test_array(itest)%assert(hfx1_even(ind_even), hfx1(x_even(ind_even)), & + tol = 2e-4_r64) + + itest = itest + 1 + test_array(itest) = testify("Hilbert transform: f(x) = sin(x)/(1 + x^2), even points") + allocate(hfx2_even(n_even)) + call Hilbert_transform(fx2(x_even), hfx2_even) + call test_array(itest)%assert(hfx2_even(ind_even), hfx2(x_even(ind_even)), & + tol = 1e-4_r64) + + itest = itest + 1 + test_array(itest) = testify("Hilbert transform: f(x) = 1/(1 + x^2), odd points") + allocate(x_odd(n_odd), hfx1_odd(n_odd)) + call linspace(x_odd, xmin, xmax, n_odd) + call Hilbert_transform(fx1(x_odd), hfx1_odd) + call test_array(itest)%assert(hfx1_odd(ind_odd), hfx1(x_odd(ind_odd)), & + tol = 4e-4_r64) + + itest = itest + 1 + test_array(itest) = testify("Hilbert transform: f(x) = sin(x)/(1 + x^2), odd points") + allocate(hfx2_odd(n_odd)) + call Hilbert_transform(fx2(x_odd), hfx2_odd) + call test_array(itest)%assert(hfx2_odd(ind_odd), hfx2(x_odd(ind_odd)), & + tol = 1e-5_r64) + tests_all = testify(test_array) call tests_all%report if(tests_all%get_status() .eqv. .false.) error stop -1 + + contains + ! reference functions for the Hilbert transform test + ! fx1 is an even function + pure elemental real(r64) function fx1(x) + real(r64), intent(in) :: x + fx1 = 1/(1.0_r64 + x**2) + end function fx1 + + ! Hfx1 is actual hilbert transform of fx1, is an odd function + pure elemental real(r64) function hfx1(x) + real(r64), intent(in) :: x + hfx1 = x/(1.0_r64 + x**2) + end function hfx1 + + ! fx2 is an odd function + pure elemental real(r64) function fx2(x) + real(r64), intent(in) :: x + fx2 = sin(x)/(1.0_r64 + x**2) + end function fx2 + + ! Hfx2 is actual hilbert transform of fx2, is an even function + pure elemental real(r64) function hfx2(x) + real(r64), intent(in) :: x + hfx2 = (exp(-1.0_r64) - cos(x))/(1.0_r64 + x**2) + end function hfx2 end program test_misc