-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathreco.py
140 lines (107 loc) · 4.76 KB
/
reco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/env python2
from __future__ import division
import csv
import os.path
import logging
import numpy as np
import scipy.io.wavfile as wavfile
from sklearn import svm
from features import mfcc
logging.basicConfig(level=logging.DEBUG)
class RecoBlock():
"""Recognizer [If there is a word like that] Block. This class
keeps the state required to recognize a set of speakers after it has
been trained.
"""
def __init__(self, data_dir, out_dir="_melcache"):
self.data_dir = os.path.abspath(data_dir);
# make folder for storing the csv file holding training data
melcache_dir = os.path.join(os.getcwd(), "_melcache")
train_file = os.path.join(melcache_dir, "training_data.csv")
try:
os.mkdir(melcache_dir)
# generate training dataset csv file and get data for training
self._gen_features(self.data_dir, train_file)
except OSError:
logging.debug("_melcache already exists. Assuming training_data.csv exists too.")
self.recognizer = svm.LinearSVC()
melv_list, speaker_names = self._get_tdata(train_file)
# generate speaker_ids from speaker_names
self.spkr_ntoi = {}
self.spkr_iton = {}
i = 0
for name in speaker_names:
if name not in self.spkr_ntoi:
self.spkr_ntoi[name] = i
self.spkr_iton[i] = name
i += 1
speaker_ids = map(lambda n: self.spkr_ntoi[n], speaker_names)
logging.debug(speaker_ids)
# train a linear svm now
self.recognizer.fit(melv_list, speaker_ids)
def _mfcc_to_fvec(self, ceps):
# calculate the mean
mean = np.mean(ceps, axis=0)
# and standard deviation of MFCC vectors
std = np.std(ceps, axis=0)
# use [mean, std] as the feature vector
fvec = np.concatenate((mean, std)).tolist()
return fvec
def _gen_features(self, data_dir, outfile):
""" Generates a csv file containing labeled lines for each speaker """
with open(outfile, 'w') as ohandle:
melwriter = csv.writer(ohandle)
speakers = os.listdir(data_dir)
for spkr_dir in speakers:
for soundclip in os.listdir(os.path.join(data_dir, spkr_dir)):
# generate mel coefficients for the current clip
clip_path = os.path.abspath(os.path.join(data_dir, spkr_dir, soundclip))
sample_rate, data = wavfile.read(clip_path)
ceps = mfcc(data, sample_rate)
# write an entry into the training file for the current speaker
# the vector to store in csv file contains the speaker's name at the end
fvec = self._mfcc_to_fvec(ceps)
fvec.append(spkr_dir)
logging.debug(fvec) # see the numbers [as if they make sense ]
# write one row to the csv file
melwriter.writerow(fvec)
def _get_tdata(self, icsv):
""" Returns the input and output example lists to be sent to an SVM
classifier.
"""
melv_list = []
speaker_ids = []
# build melv_list and speaker_ids lists
with open(icsv, 'r') as icsv_handle:
melreader = csv.reader(icsv_handle)
for example in melreader:
melv_list.append(map(float, example[:-1]))
speaker_ids.append(example[-1])
# and return them!
return melv_list, speaker_ids
def predict(self, soundclip):
""" Recognizes the speaker in the sound clip. """
sample_rate, data = wavfile.read(os.path.abspath(soundclip))
ceps = mfcc(data, sample_rate)
fvec = self._mfcc_to_fvec(ceps)
speaker_id = self.recognizer.predict(fvec)[0]
return self.spkr_iton[speaker_id]
if __name__ == "__main__":
recoblock = RecoBlock("train_data")
test_dir = os.path.abspath("test_data")
testset_size = 0
testset_error = 0
for spkr_dir in os.listdir(test_dir):
for soundclip in os.listdir(os.path.join(test_dir, spkr_dir)):
clippath = os.path.abspath(os.path.join(test_dir, spkr_dir, soundclip))
prediction = recoblock.predict(clippath)
testset_size += 1
if prediction != spkr_dir:
testset_error += 1
print "%s %s " % (prediction, u"[\u2717]")
else:
print "%s %s " % (prediction, u"[\u2713]")
if testset_size == 0:
print "No test data available."
else:
print "Error on test data: %.2f%%\n" % (testset_error / testset_size * 100)