-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathinference.py
178 lines (153 loc) · 6.57 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from super_gradients.training import models
import torch
import cv2
import random
import numpy as np
import time
import argparse
import os
ap = argparse.ArgumentParser()
ap.add_argument("-n", "--num", type=int, required=False,
help="number of classes the model trained on")
ap.add_argument("-m", "--model", type=str, default='yolo_nas_s',
choices=['yolo_nas_s', 'yolo_nas_m', 'yolo_nas_l'],
help="Model type (eg: yolo_nas_s)")
ap.add_argument("-w", "--weight", type=str, required=True,
help="path to trained model weight")
ap.add_argument("-s", "--source", type=str, required=True,
help="video path/cam-id/RTSP")
ap.add_argument("-c", "--conf", type=float, default=0.25,
help="model prediction confidence (0<conf<1)")
ap.add_argument("--save", action='store_true',
help="Save video")
ap.add_argument("--hide", action='store_false',
help="to hide inference window")
args = vars(ap.parse_args())
def plot_one_box(x, img, color=None, label=None, line_thickness=3):
# Plots one bounding box on image img
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
color = color or [random.randint(0, 255) for _ in range(3)]
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
if label:
tf = max(tl - 1, 1) # font thickness
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
def get_bbox(img):
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
preds = model.predict(img_rgb, conf=args['conf'])._images_prediction_lst[0]
# class_names = preds.class_names
dp = preds.prediction
bboxes, confs, labels = np.array(dp.bboxes_xyxy), dp.confidence, dp.labels.astype(int)
for box, cnf, cs in zip(bboxes, confs, labels):
plot_one_box(box[:4], img, label=f'{class_names[int(cs)]} {cnf:.3}', color=colors[cs])
return labels
# Load COCO YOLO-NAS Model
if args["weight"] == "coco":
model = models.get(args['model'], pretrained_weights="coco")
# Load YOLO-NAS Model
else:
model = models.get(
args['model'],
num_classes=args['num'],
checkpoint_path=args["weight"]
)
model = model.to("cuda" if torch.cuda.is_available() else "cpu")
class_names = model.predict(np.zeros((1,1,3)), conf=args['conf'])._images_prediction_lst[0].class_names
print('Class Names: ', class_names)
colors = [[random.randint(0, 255) for _ in range(3)] for _ in class_names]
# Global Timer
global_timer = time.time()
# Inference Image
if args['source'].endswith('.jpg') or args['source'].endswith('.jpeg') or args['source'].endswith('.png'):
img = cv2.imread(args['source'])
labels = get_bbox(img)
# Timer
print(f'[INFO] Completed in \033[1m{(time.time()-global_timer)/60} Minute\033[0m')
if args['hide'] is False and len(labels)>0:
pre_list = [class_names[int(x)] for x in labels]
count_pred = {i:pre_list.count(i) for i in pre_list}
print(f'Prediction: {count_pred}')
# save Image
if args['save'] or args['hide'] is False:
os.makedirs(os.path.join('runs', 'detect'), exist_ok=True)
path_save = os.path.join('runs', 'detect', os.path.split(args['source'])[1])
cv2.imwrite(path_save, img)
print(f"\033[1m[INFO] Saved Image: {path_save}\033[0m")
# Hide video
if args['hide']:
cv2.namedWindow("img", cv2.WINDOW_NORMAL)
cv2.setWindowProperty('img', cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)
cv2.imshow('img', img)
if cv2.waitKey(0) & 0xFF == ord('q'):
cv2.destroyAllWindows()
# Reading Video/Cam/RTSP
else:
video_path = args['source']
if video_path.isnumeric():
video_path = int(video_path)
cap = cv2.VideoCapture(video_path)
if args['hide'] is False:
length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_count = 0
# Get the width and height of the video - SAVE VIDEO.
if args['save'] or args['hide'] is False:
original_video_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
original_video_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
os.makedirs(os.path.join('runs', 'detect'), exist_ok=True)
if not str(video_path).isnumeric():
path_save = os.path.join('runs', 'detect', os.path.split(video_path)[1])
else:
c = 0
while True:
if not os.path.exists(os.path.join('runs', 'detect', f'cam{c}.mp4')):
path_save = os.path.join('runs', 'detect', f'cam{c}.mp4')
break
else:
c += 1
out_vid = cv2.VideoWriter(path_save,
cv2.VideoWriter_fourcc(*'mp4v'),
fps, (original_video_width, original_video_height))
p_time = 0
if args['hide']:
cv2.namedWindow("img", cv2.WINDOW_NORMAL)
cv2.setWindowProperty('img', cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)
while True:
success, img = cap.read()
if not success:
print('[INFO] Failed to read...')
break
labels = get_bbox(img)
if args['hide'] is False and len(labels)>0:
frame_count += 1
pre_list = [class_names[int(x)] for x in labels]
count_pred = {i:pre_list.count(i) for i in pre_list}
print(f'Frames Completed: {frame_count}/{length} Prediction: {count_pred}')
# FPS
c_time = time.time()
fps = 1/(c_time-p_time)
p_time = c_time
cv2.putText(
img, f'FPS: {fps:.3}', (50, 60),
cv2.FONT_HERSHEY_PLAIN, 2,
(0, 255, 0), 2
)
# Write Video
if args['save'] or args['hide'] is False:
out_vid.write(img)
# Hide video
if args['hide']:
cv2.imshow('img', img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Timer
print(f'[INFO] Completed in \033[1m{(time.time()-global_timer)/3600} Hours\033[0m')
cap.release()
if args['save'] or args['hide'] is False:
out_vid.release()
print(f"[INFO] Outout Video Saved in \033[1m{path_save}\033[0m")
if args['hide']:
cv2.destroyAllWindows()