-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtest_9_Trainer.py
132 lines (122 loc) · 6.74 KB
/
test_9_Trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from sdmdl.sdmdl.config import Config
from sdmdl.sdmdl.occurrences import Occurrences
from sdmdl.sdmdl.gis import GIS
from sdmdl.sdmdl.trainer import Trainer
import unittest
import pandas as pd
import numpy as np
import keras
import os
import tensorflow as tf
class TrainerTestCase(unittest.TestCase):
def setUp(self):
self.root = os.path.abspath(os.path.join(os.path.dirname(__file__))) + '/test_data'
self.oh = Occurrences(self.root + '/root')
self.oh.validate_occurrences()
self.oh.species_dictionary()
self.gh = GIS(self.root + '/root')
self.gh.validate_gis()
self.gh.validate_tif()
self.gh.define_output()
self.ch = Config(self.root + '/root', self.oh, self.gh)
self.ch.search_config()
self.ch.read_yaml()
self.verbose = False
self.t = Trainer(self.oh, self.gh, self.ch, self.verbose)
def test__init__(self):
self.assertEqual(self.t.oh, self.oh)
self.assertEqual(self.t.gh, self.gh)
self.assertEqual(self.t.ch, self.ch)
self.assertEqual(self.t.verbose, self.verbose)
self.assertEqual(self.t.spec, '')
self.assertEqual(self.t.variables, [])
self.assertEqual(self.t.test_loss, [])
self.assertEqual(self.t.test_acc, [])
self.assertEqual(self.t.test_AUC, [])
self.assertEqual(self.t.test_tpr, [])
self.assertEqual(self.t.test_uci, [])
self.assertEqual(self.t.test_lci, [])
self.assertEqual(self.t.best_model_auc, [0])
self.assertEqual(self.t.occ_len, 0)
self.assertEqual(self.t.abs_len, 0)
self.assertEqual(self.t.random_seed, self.ch.random_seed)
self.assertEqual(self.t.batch, self.ch.batchsize)
self.assertEqual(self.t.epoch, self.ch.epoch)
self.assertEqual(self.t.model_layers, self.ch.model_layers)
self.assertEqual(self.t.model_dropout, self.ch.model_dropout)
def test_create_eval(self):
os.remove(self.root + '/root/results/_DNN_performance/DNN_eval.txt')
self.assertFalse(os.path.isfile(self.root + '/root/results/_DNN_performance/DNN_eval.txt'))
print(self.root)
self.t.create_eval()
self.assertTrue(os.path.isfile(self.root + '/root/results/_DNN_performance/DNN_eval.txt'))
dnn_eval = pd.read_csv(self.root + '/root/results/_DNN_performance/DNN_eval.txt', delimiter='\t')
dnn_eval_truth = pd.read_csv(self.root + '/trainer/create_eval.txt', delimiter='\t')
self.assertEqual(dnn_eval.to_numpy().tolist(), dnn_eval_truth.to_numpy().tolist())
def test_create_input_data(self):
self.t.spec = self.oh.name[0]
X, X_train, X_test, y_train, y_test, test_set, shuffled_X_train, shuffled_X_test = self.t.create_input_data()
X_truth = np.load(self.root + '/trainer/X.npy')
X_train_truth = np.load(self.root + '/trainer/X_train.npy')
X_test_truth = np.load(self.root + '/trainer/X_test.npy')
y_train_truth = np.load(self.root + '/trainer/y_train.npy')
y_test_truth = np.load(self.root + '/trainer/y_test.npy')
test_set_truth = np.load(self.root + '/trainer/test_set.npy')
shuffled_X_train_truth = np.load(self.root + '/trainer/shuffled_X_train.npy')
shuffled_X_test_truth = np.load(self.root + '/trainer/shuffled_X_test.npy')
self.assertEqual(X.tolist(), X_truth.tolist())
self.assertEqual(X_train.tolist(), X_train_truth.tolist())
self.assertEqual(X_test.tolist(), X_test_truth.tolist())
self.assertEqual(y_train.tolist(), y_train_truth.tolist())
self.assertEqual(y_test.tolist(), y_test_truth.tolist())
self.assertEqual(test_set.to_numpy().tolist(), test_set_truth.tolist())
self.assertEqual(shuffled_X_train.tolist(), shuffled_X_train_truth.tolist())
self.assertEqual(shuffled_X_test.tolist(), shuffled_X_test_truth.tolist())
def test_create_model_architecture(self):
self.t.spec = self.oh.name[0]
X, _, _, _, _, _, _, _ = self.t.create_input_data()
model = self.t.create_model_architecture(X)
model_truth = keras.models.load_model(self.root + '/trainer/model.h5')
self.assertEqual(model.get_config(), model_truth.get_config())
weights = [x.tolist() for x in model.get_weights()]
weights_truth = [x.tolist() for x in model_truth.get_weights()]
self.assertEqual(weights, weights_truth)
def notest_train_model(self):
self.t.spec = self.oh.name[0]
X, X_train, X_test, y_train, y_test, _, _, _ = self.t.create_input_data()
model = self.t.create_model_architecture(X)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
tf.Session(config=config)
AUC, model = self.t.train_model(model, X_train, X_test, y_train, y_test)
AUC_truth = 0.9930313588850174
model_truth = keras.models.load_model(self.root + '/trainer/model_trained.h5')
print(model.get_config())
self.assertAlmostEqual(AUC, AUC_truth)
#self.assertEqual(model.get_config(), model_truth.get_config()) ## look into this (it crashes when running the whole test suite but passes when only running this test)
weights = [x.tolist() for x in model.get_weights()]
weights_truth = [x.tolist() for x in model_truth.get_weights()]
if len(weights) == len(weights_truth):
for list in range(len(weights)):
if len(weights[list]) == len(weights_truth[list]):
for lis in range(len(weights[list])):
np.testing.assert_almost_equal(weights[list][lis], weights_truth[list][lis], 6)
def notest_update_performance_metrics(self):
self.t.spec = self.oh.name[0]
X, X_train, X_test, y_train, y_test, _, _, _ = self.t.create_input_data()
model = self.t.create_model_architecture(X)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
tf.Session(config=config)
AUC, model = self.t.train_model(model, X_train, X_test, y_train, y_test)
os.remove(self.root + '/root/results/_DNN_performance/DNN_eval.txt')
self.assertFalse(os.path.isfile(self.root + '/root/results/_DNN_performance/DNN_eval.txt'))
self.t.create_eval()
self.t.update_performance_metrics()
self.assertTrue(os.path.isfile(self.root + '/root/results/_DNN_performance/DNN_eval.txt'))
dnn_eval = pd.read_csv(self.root + '/root/results/_DNN_performance/DNN_eval.txt', delimiter='\t')
dnn_eval_truth = pd.read_csv(self.root + '/trainer/update_performance_metrics.txt', delimiter='\t')
self.assertEqual(dnn_eval.to_numpy()[0][0],dnn_eval_truth.to_numpy()[0][0])
np.testing.assert_almost_equal(dnn_eval.to_numpy()[0][1:], dnn_eval_truth.to_numpy()[0][1:],6)
if __name__ == '__main__':
unittest.main()