-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathml_performance.py
381 lines (305 loc) · 18.4 KB
/
ml_performance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import os
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import RFE, SequentialFeatureSelector
from sklearn.impute import KNNImputer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import make_scorer, f1_score, recall_score, precision_score, accuracy_score, \
balanced_accuracy_score
from sklearn.model_selection import train_test_split, GridSearchCV, StratifiedKFold, cross_validate, KFold
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
import ray
import warnings
NAN_REPLACEMENT = 'knn' # options: mean, median, knn
NAN_KNN_NEIGHBORS = 5 # should only be used, when knn for NaN replacement selected
ray.init(ignore_reinit_error=True, num_cpus=128)
# training & validation
ROUNDS = 50
SAMPLE_SIZES = np.array([0.03, 0.05, 0.1, 0.25, 0.5, 1.0])
TRAIN_SIZE = np.array([0.6, 0.8, 0.9])
MODELS = np.array(['svm']) # 'svm', 'logistic_regression', 'naive_bayes', 'knn', 'random_forest', 'decision_tree'
VALIDATION_TYPES = np.array(['ts', 'all_nested', 'all_kfold', 'fs_nested_pt_kfold', 'fs_kfold_pt_nested'])#'ts', 'all_nested', 'all_kfold', 'fs_nested_pt_kfold', 'fs_kfold_pt_nested'
CV_SPLIT_SIZE = np.array([2, 5, 7, 9, 13])
MAIN_METRICS = np.array(['accuracy', 'balanced_accuracy', 'f1', 'precision', 'recall']) # 'accuracy' ,'balanced_accuracy', 'f1', 'precision', 'recall'
SHOULD_BE_BINARY = False
FEATURE_SELECTOR = np.array(['rfe']) # , 'sequential'
FEATURE_SELECTION_FRAC = np.array([0.4, 0.7, 1.0]) #np.linspace(0.1, 1, 2, endpoint=True) # relevant for rfe and sequential, 10, 0.25, 0.5, 0.75, 1.0;
MAX_FEATURES = 14 # this is the maximum number of features for your dataset
# parameter ranges for models
PAR_SPLIT_SIZE = np.array([2, 5, 7, 9, 13])
par_grid = {'svm': {'C': np.logspace(-1, 7, num=7, base=2), 'gamma': np.logspace(1, -7, num=7, base=2)},
'logistic_regression': {'C': np.logspace(0, 4, num=10, base=10), 'penalty': ['l1', 'l2']},
'random_forest': {'n_estimators': [int(x) for x in np.linspace(start=5, stop=500, num=5, endpoint=True)],
'max_depth': [
[int(x) for x in np.linspace(10, 100, num=5, endpoint=True)].extend([None, 'sqrt'])],
'min_samples_split': [2, 5],
'min_samples_leaf': [1, 2],
'bootstrap': [True, False]},
'decision_tree': {'max_depth': [[int(x) for x in np.linspace(10, 100, num=10, endpoint=True)].append(None)],
'min_samples_split': [2, 5, 10],
'min_samples_leaf': [1, 2, 4]},
'knn': {'n_neighbors': np.linspace(1, 10, num=10, endpoint=True, dtype=int)},
'naive_bayes': {'var_smoothing': np.logspace(0, -9, num=100)}}
SCORING_METRICS = {
'accuracy': make_scorer(accuracy_score),
'balanced_accuracy': make_scorer(balanced_accuracy_score),
'f1': make_scorer(f1_score, average='weighted'),
'precision': make_scorer(precision_score, average='weighted'),
'recall': make_scorer(recall_score, average='weighted')
}
NUM_METRICS = len(SCORING_METRICS.keys())
PERFORMANCE_METRICS_TEST = ['test_' + i for i in SCORING_METRICS.keys()]
warnings.filterwarnings("ignore")
# ------------------------
def select_features(estimator, features, target, sel_type, frac):
if sel_type == 'rfe':
selector = RFE(estimator, n_features_to_select=frac, step=1)
selector = selector.fit(features, target)
return selector.support_
elif sel_type == 'sequential':
selector = SequentialFeatureSelector(estimator, n_features_to_select=frac)
selector = selector.fit(features, target)
return selector.support_
def tune_parameters(estimator, features, target, param_grid, split_size, main_metric):
cross_val = StratifiedKFold(n_splits=split_size, shuffle=True)
clf = GridSearchCV(estimator=estimator, param_grid=param_grid,
cv=cross_val, scoring=SCORING_METRICS, refit=main_metric) # define a model with parameter tuning
clf.fit(features, target)
results = clf.cv_results_
return clf.best_params_, np.array([[results["mean_test_%s" % scorer][np.nonzero(results["rank_test_%s" % scorer] == 1)[0][0]] for scorer in SCORING_METRICS.keys()]])
def read_data():
column_names = ['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach', 'exang', 'oldpeak', 'slope',
'ca', 'thal', 'target']
data_path = os.path.join(os.getcwd(), "data/")
cleveland_data = pd.read_csv(os.path.join(data_path, "processed.cleveland.data"), names=column_names, na_values='?')
cleveland_data['location'] = 0
hungarian_data = pd.read_csv(os.path.join(data_path, "reprocessed.hungarian.data"), na_values='-9',
names=column_names, delimiter=' ')
hungarian_data['location'] = 1
switzerland_data = pd.read_csv(os.path.join(data_path, "processed.switzerland.data"), names=column_names, na_values='?')
switzerland_data['location'] = 2
va_data = pd.read_csv(os.path.join(data_path, "processed.va.data"), names=column_names, na_values='?')
va_data['location'] = 3
r = pd.concat([cleveland_data, hungarian_data, switzerland_data, va_data], axis=0, ignore_index=True)
return pre_process(r)
def pre_process(data_to_process):
r = data_to_process.astype(float, errors='raise')
r.replace({'chol': 0, 'trestbps': 0}, value=np.NaN, inplace=True) # chol and trestbps seem to have 0-values
r['thal'].replace({3.0: 0.0, 6.0: 1.0, 7.0: 2.0}, inplace=True)
r = r[['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach', 'exang', 'oldpeak', 'slope',
'ca', 'thal', 'location', 'target']]
return r
def replace_nan(data_to_process):
if NAN_REPLACEMENT == 'mean':
return data_to_process.fillna(data_to_process.mean())
elif NAN_REPLACEMENT == 'median':
return data_to_process.fillna(data_to_process.median())
elif NAN_REPLACEMENT == 'knn':
imputer = KNNImputer(n_neighbors=NAN_KNN_NEIGHBORS)
return pd.DataFrame(imputer.fit_transform(data_to_process), columns=data_to_process.columns)
def select_features_estimator(name):
if name == 'svm':
return SVC(kernel='linear')
elif name == 'random_forest':
return RandomForestClassifier()
elif name == 'decision_tree':
return DecisionTreeClassifier()
elif name == 'logistic_regression':
return LogisticRegression(max_iter=10000, solver='liblinear')
elif name == 'naive_bayes':
return SVC(kernel='linear')
elif name == 'knn':
return SVC(kernel='linear')
def select_parameters_estimator(name):
if name == 'naive_bayes':
return GaussianNB()
elif name == 'knn':
return KNeighborsClassifier()
elif name == 'svm':
return SVC(kernel='rbf')
else:
return select_features_estimator(name)
def select_validation_estimator(name):
return select_parameters_estimator(name)
def measure_performances(model_object, X_to_predict, y_true):
return np.array([[score(model_object, X_to_predict, y_true) for score in SCORING_METRICS.values()]])
@ray.remote
def do_calc(model, main_metric, sample_size, feature_selector, feature_selection_frac, validation_type, par_split_size, cv_split_size, train_size):
warnings.filterwarnings("ignore")
performance = np.empty((ROUNDS,NUM_METRICS), float)
for i in range(ROUNDS):
j = 0
tries = 0
while j < 1:
if tries >= 1:
entry = pd.DataFrame({'model': model,
'main_metric': main_metric,
'sample_size': sample_size,
'feature_selector': feature_selector,
'feature_selection_frac': feature_selection_frac,
'validation_type': validation_type,
'train_size': train_size,
'cv_split_size': cv_split_size,
'par_split_size': par_split_size,
'accuracy': np.NaN,
'balanced_accuracy': np.NaN,
'f1': np.NaN,
'precision': np.NaN,
'recall': np.NaN}, index=[0])
entry.to_csv('output_entries', mode='a', index=False, header=False)
return entry
try:
sample = data.groupby('target', group_keys=False).apply(
lambda x: x.sample(frac=sample_size))
X = sample.drop('target', axis=1)
y = sample['target']
# print(model, sample_size, feature_selector, feature_selection_frac, validation_type, par_split_size, fs_cv_split_size, train_size, i, j, tries)
if validation_type == 'ts':
X_train, X_test, y_train, y_test = train_test_split(X, y,
train_size=train_size,
shuffle=True, stratify=y.values)
feature_selection_mask = select_features(
select_features_estimator(model),
X_train, y_train, feature_selector,
feature_selection_frac)
X_train_sel = X_train.loc[:, feature_selection_mask]
X_test_sel = X_test.loc[:, feature_selection_mask]
parameter, _ = tune_parameters(select_parameters_estimator(model), X_train_sel,
y_train, par_grid[model], par_split_size, main_metric)
model_object = (select_validation_estimator(model).set_params(
**parameter)).fit(X_train_sel, y_train)
performance[i] = measure_performances(model_object, X_test_sel, y_test)
elif validation_type == 'all_nested':
kf = StratifiedKFold(n_splits=cv_split_size, shuffle=True)
inner_perf = np.empty((cv_split_size, NUM_METRICS), float)
c = 0
for train_index, test_index in kf.split(X, y):
X_train, X_test = X.iloc[train_index], X.iloc[test_index]
y_train, y_test = y.iloc[train_index], y.iloc[test_index]
feature_selection_mask = select_features(
select_features_estimator(model),
X_train, y_train, feature_selector,
feature_selection_frac)
X_train_sel = X_train.loc[:, feature_selection_mask]
X_test_sel = X_test.loc[:, feature_selection_mask]
parameter, _ = tune_parameters(select_parameters_estimator(model),
X_train_sel,
y_train, par_grid[model],
par_split_size, main_metric)
model_object = (select_validation_estimator(model).set_params(
**parameter)).fit(X_train_sel, y_train)
inner_perf[c] = measure_performances(model_object, X_test_sel, y_test)
c+=1
performance[i] = inner_perf.mean(axis=0)
elif validation_type == 'all_kfold':
feature_selection_mask = select_features(
select_features_estimator(model),
X, y, feature_selector,
feature_selection_frac)
X_sel = X.loc[:, feature_selection_mask]
parameter, results = tune_parameters(select_parameters_estimator(model), X_sel,
y, par_grid[model], par_split_size, main_metric)
performance[i] = results
elif validation_type == 'fs_nested_pt_kfold':
kf = StratifiedKFold(n_splits=cv_split_size, shuffle=True)
inner_perf = np.empty((cv_split_size, NUM_METRICS), float)
c = 0
for train_index, test_index in kf.split(X, y):
X_train, X_test = X.iloc[train_index], X.iloc[test_index]
y_train, y_test = y.iloc[train_index], y.iloc[test_index]
feature_selection_mask = select_features(
select_features_estimator(model),
X_train, y_train, feature_selector,
feature_selection_frac)
X_train_sel = X_train.loc[:, feature_selection_mask]
X_test_sel = X_test.loc[:, feature_selection_mask]
X_sel = X.loc[:, feature_selection_mask]
parameter, _ = tune_parameters(select_parameters_estimator(model),
X_sel,
y, par_grid[model], par_split_size, main_metric)
model_object = (select_validation_estimator(model).set_params(**parameter)).fit(X_train_sel, y_train)
inner_perf[c] = measure_performances(model_object, X_test_sel, y_test)
c += 1
performance[i] = inner_perf.mean(axis=0)
elif validation_type == 'fs_kfold_pt_nested':
feature_selection_mask = select_features(
select_features_estimator(model),
X, y, feature_selector,
feature_selection_frac)
kf = StratifiedKFold(n_splits=cv_split_size, shuffle=True)
inner_perf = np.empty((cv_split_size, NUM_METRICS), float)
c=0
for train_index, test_index in kf.split(X, y):
X_train, X_test = X.iloc[train_index], X.iloc[test_index]
y_train, y_test = y.iloc[train_index], y.iloc[test_index]
X_train_sel = X_train.loc[:, feature_selection_mask]
X_test_sel = X_test.loc[:, feature_selection_mask]
parameter, _ = tune_parameters(select_parameters_estimator(model),
X_train_sel,
y_train, par_grid[model],
par_split_size, main_metric)
model_object = (select_validation_estimator(model).set_params(**parameter)).fit(X_train_sel, y_train)
inner_perf[c] = measure_performances(model_object, X_test_sel, y_test)
c += 1
performance[i] = inner_perf.mean(axis=0)
j = 1
except:
tries += 1
entries = pd.DataFrame({'model': model,
'main_metric': main_metric,
'sample_size': sample_size,
'feature_selector': feature_selector,
'feature_selection_frac': feature_selection_frac,
'validation_type': validation_type,
'train_size': train_size,
'cv_split_size': cv_split_size,
'par_split_size': par_split_size,
'accuracy': performance[:,0],
'balanced_accuracy': performance[:,1],
'f1': performance[:,2],
'precision': performance[:,3],
'recall': performance[:,4]})
entries.to_csv('output_entries', mode='a', index=False, header=False)
return entries
if __name__ == '__main__':
data = read_data()
data = replace_nan(data)
data = data.astype({'age': int, 'sex': int, 'cp': int, 'trestbps': float, 'chol': float, 'fbs': float,
'restecg': float, 'thalach': float, 'exang': float, 'oldpeak': float, 'slope': float,
'ca': float, 'thal': float, 'location': int, 'target': int})
if SHOULD_BE_BINARY:
data.replace({'target': [1,2,3,4]}, value=1, inplace=True) # making it binary
output = pd.DataFrame(columns=['model', 'main_metric', 'sample_size', 'feature_selector',
'feature_selection_frac', 'validation_type', 'train_size',
'cv_split_size', 'par_split_size', 'accuracy', 'balanced_accuracy',
'f1', 'precision', 'recall'])
result = []
for model in MODELS:
for main_metric in MAIN_METRICS:
for feature_selector in FEATURE_SELECTOR:
for sample_size in SAMPLE_SIZES:
for feature_selection_frac in FEATURE_SELECTION_FRAC:
for validation_type in VALIDATION_TYPES:
for par_split_size in PAR_SPLIT_SIZE:
if validation_type == 'ts':
train_size_list = TRAIN_SIZE
cv_split_size_list = np.array([np.NaN])
elif validation_type == 'all_kfold':
train_size_list = np.array([np.NaN])
cv_split_size_list = np.array([np.NaN])
else:
train_size_list = np.array([np.NaN])
cv_split_size_list = CV_SPLIT_SIZE
for cv_split_size in cv_split_size_list:
for train_size in train_size_list:
result.append(do_calc.remote(model, main_metric, sample_size, feature_selector, feature_selection_frac,
validation_type,
par_split_size, cv_split_size, train_size))
ready, not_ready = ray.wait(result, num_returns=len(result), timeout=None)
for f in ready:
output = pd.concat([output, ray.get(f)], ignore_index=True)
output.to_csv('output', index=False)