-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathevaluate_kitti.py
122 lines (99 loc) · 4.94 KB
/
evaluate_kitti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import numpy as np
import argparse
from tqdm import tqdm
from config import load_config
from models import get_model_wrapper
from data_generators.kitti import load_image_gt, KittiDataset
def compute_confusion_matrix(gt_mask, pr_mask, num_classes):
gt_mask = np.max(gt_mask * np.arange(1, num_classes), axis=-1)
pr_mask = np.max(pr_mask * np.arange(1, num_classes), axis=-1)
confusion_matrix = np.zeros((num_classes, num_classes))
for row, col in np.ndindex(gt_mask.shape):
gt_cls = gt_mask[row][col]
pr_cls = pr_mask[row][col]
confusion_matrix[gt_cls][pr_cls] += 1
return confusion_matrix
if __name__ == '__main__':
# Parse command line arguments
parser = argparse.ArgumentParser(
description='Evaluate a semantic segmentation model on KITTI dataset.')
parser.add_argument('-c', '--model_cfg', required=True,
metavar='/path/to/model.cfg',
help='Path to model.cfg file')
parser.add_argument('-w', '--weights', required=False,
default=None,
metavar='/path/to/weights.h5',
help='Path to weights.h5 file')
parser.add_argument('-d', '--dataset', required=True,
metavar='/path/to/coco/',
help='Directory of the MS-COCO dataset')
parser.add_argument('--tag', required=False,
default='simple',
metavar='<tag>',
help='Tag of the KITTI dataset (default=simple)')
parser.add_argument('--subset', required=False,
default='val',
metavar="<subset>",
help='Either train or val')
parser.add_argument('-t', '--threshold', required=False,
type=float,
default=0.5,
metavar='Threshold value for inference',
help='Must be between 0 and 1.')
args = parser.parse_args()
model = get_model_wrapper(load_config(args.model_cfg))
model.load_weights(args.weights)
dataset = KittiDataset()
dataset.load_kitti(args.dataset, args.subset, args.tag)
assert dataset.num_classes == model.config.NUM_CLASSES
num_classes = dataset.num_classes
confusion_matrix = np.zeros((num_classes, num_classes))
for i in tqdm(range(dataset.num_images)):
img, gt_mask = load_image_gt(dataset, i, model.config.IMAGE_SHAPE)
pr_mask = model.predict(img.astype(np.float32), args.threshold)
confusion_matrix += compute_confusion_matrix(gt_mask.astype(np.int), pr_mask.astype(np.int), num_classes)
# The measures below are implementation of standard measures
# introduced in the following paper:
# http://www.bmva.org/bmvc/2013/Papers/paper0032/paper0032.pdf
G = np.sum(confusion_matrix, axis=1)
P = np.sum(confusion_matrix, axis=0)
# OP(overall pixel accuracy)
# accuracy measures the proportion of correctly labelled pixels
# limitation: bias in the presence of very imbalanced classes
overall_pixel = np.trace(confusion_matrix) / np.sum(G)
# PC(per class accuracy)
# The proportion of correctly labelled pixels for
# each class and then averages over the classes
# Therefore, the background region absorbs all
# false alarms without affecting the object class accuracies
# limitation: a strong drawback for datasets with a large background class
per_class = []
for i in range(num_classes):
per_class.append(confusion_matrix[i][i] / G[i])
# JI(jaccard index)
# Measures the intersection over the union of the labelled segments
# for each class and reports the average. Thus takes into account
# both the false alarms and the missed values for each class
# limitation: it evaluates the amount of pixels correctly labelled, but not necessarily how
# accurate the segmentation boundaries are
jaccard_index = []
for i in range(num_classes):
jaccard_index.append(confusion_matrix[i][i] / (G[i] + P[i] - confusion_matrix[i][i]))
# Normalized confusion matrix
ncm = confusion_matrix / np.stack((G,) * num_classes, axis=1)
class_names = ['Background']
class_names += dataset.class_names
print('<Class Indexing>')
for class_id, class_name in enumerate(class_names):
print('\t{}: {}'.format(class_id + 1, class_name))
np.set_printoptions(precision=2, suppress=True)
print('\n<Confusion Matrix>\n', ncm*100)
np.set_printoptions()
print('\n<Pixel Accuracy>')
print('Overall: %.2f%%' % (overall_pixel.item() * 100))
for class_name, op in zip(class_names, per_class):
print('\t{}: %.2f%%'.format(class_name) % (op.item() * 100))
print('\n<Jaccard Index>')
print('Overall: %.2f%%' % (np.sum(jaccard_index).item() / num_classes * 100))
for class_name, ji in zip(class_names, jaccard_index):
print('\t{}: %.2f%%'.format(class_name) % (ji.item() * 100))