-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathner_fine_tune.py
885 lines (774 loc) · 35.8 KB
/
ner_fine_tune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for NER task """
import sys
import time
import json
import logging
import os
import random
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from dataclasses import dataclass, field
from typing import Optional
from helpers.pruning_utils import pruning_model, see_weight_rate, pruning_model_custom, random_pruning_model
from helpers.utils import set_seed
from datasets import ClassLabel, load_dataset, load_metric
from transformers import (
AdamW,
AutoTokenizer,
AutoConfig,
AutoModelForTokenClassification,
HfArgumentParser,
PreTrainedTokenizerFast,
DataCollatorForTokenClassification,
get_linear_schedule_with_warmup,
)
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
logging.basicConfig(level = logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class LTHTrainingArguments:
""" Arguments for Lottery Ticket Hypothesis training. """
max_steps: int = field(
default=-1,
metadata={"help": "If > 0: set total number of training steps to perform. Override num_train_epochs."}
)
max_grad_norm: float = field(
default=1.0, metadata={"help": "Max gradient norm."}
)
output_dir: str = field(
default=None, metadata={"help": "Output directory path."}
)
log_dir: str = field(
default=None, metadata={"help": "Log directory path."}
)
mask_dir: str = field(
default=None, metadata={"help": "LTH pretrained mask path."}
)
overwrite_output_dir: bool = field(
default=True, metadata={"help": "Whether overwrite the output dir."}
)
data_language: str = field(
default=None, metadata={"help": "Data language."}
)
pruning_type: str = field(
default="lth", metadata={"help": "Pruning type (random, oneshot, lth)."}
)
save_steps: int = field(
default=1875, metadata={"help": "Save checkpoint every X updates steps."}
)
logging_steps: int = field(
default=1875, metadata={"help": "Log every X updates steps."}
)
evaluate_during_training: bool = field(
default=True, metadata={"help": "Whether to evaluate during training or not."}
)
weight_init: str = field(
default="pre", metadata={"help": "Initial weights."}
)
warmup_steps: int = field(
default=0, metadata={"help": "Linear warmup over warmup_steps."}
)
sparsity: int = field(
default=50,
metadata={"help": "Sparsity level for pruning."},
)
initial_weight: str = field(
default="pre",
metadata = {"help": "Whether start with pre-trained or random weights"},
)
rand_seed: bool = field(
default=False, metadata={"help": "Whether set a seed or not."}
)
do_train: bool = field(
default=False, metadata={"help": "Whether to run training."}
)
do_eval: bool = field(
default=True, metadata={"help": "Whether to run eval on the dev set."}
)
do_predict: bool = field(
default=False, metadata={"help": "Whether to run predictions on the test set."}
)
per_device_train_batch_size: int = field(
default=32, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
)
per_device_eval_batch_size: int = field(
default=32, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
)
gradient_accumulation_steps: int = field(
default=1,
metadata={"help": "Number of updates steps to accumulate before performing a backward/update pass."},
)
learning_rate: float = field(
default=2e-5, metadata={"help": "The initial learning rate for AdamW."}
)
num_train_epochs: float = field(
default=3.0, metadata={"help": "Total number of training epochs to perform."}
)
weight_decay: float = field(
default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."}
)
adam_beta1: float = field(
default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}
)
adam_beta2: float = field(
default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}
)
adam_epsilon: float = field(
default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}
)
local_rank: int = field(
default=-1, metadata={"help": "For distributed training: local_rank"}
)
no_cuda: bool = field(
default=False, metadata={"help": "Do not use CUDA even when it is available"}
)
seed: int = field(
default=65, metadata={"help": "Random seed that will be set at the beginning of training."}
)
model_name_or_path: str = field(
default= "bert-base-multilingual-cased",
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
task_name: Optional[str] = field(
default="ner", metadata={"help": "The name of the task (ner, pos...)."}
)
dataset_name: Optional[str] = field(
default="wikiann", metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
)
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
)
text_column_name: Optional[str] = field(
default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."}
)
label_column_name: Optional[str] = field(
default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."}
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_seq_length: int = field(
default=128,
metadata={
"help": "The maximum total input sequence length after tokenization. If set, sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
pad_to_max_length: bool = field(
default=True,
metadata={
"help": "Whether to pad all samples to model maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
},
)
label_all_tokens: bool = field(
default=False,
metadata={
"help": "Whether to put the label for one word on all tokens of generated by that word or just on the "
"one (in which case the other tokens will have a padding index)."
},
)
return_entity_level_metrics: bool = field(
default=False,
metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
)
fp16: bool = field(
default=False,
metadata={"help": "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit"})
fp16_opt_level: str = field(
default="O1",
metadata={"help": "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html"})
server_ip: str = field(default="", metadata={ "help": "For distant debugging."})
server_port: str = field(default="", metadata={ "help": "For distant debugging."})
def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
self.task_name = self.task_name.lower()
def train(args, train_dataset, eval_dataset, model, data_collator, compute_metrics, tokenizer):
""" Train the model """
record_result = []
zero_rate = see_weight_rate(model)
record_result.append(zero_rate)
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter(log_dir=args.log_dir)
args.train_batch_size = args.per_device_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, collate_fn=data_collator, sampler=train_sampler,
batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
# Check if saved optimizer or scheduler states exist
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
os.path.join(args.model_name_or_path, "scheduler.pt")
):
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True,
)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_device_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
epochs_trained = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if os.path.exists(args.model_name_or_path):
# set global_step to global_step of last saved checkpoint from model path
try:
global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
except ValueError:
global_step = 0
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step)
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0],
)
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
model.train()
inputs = {t:batch[t].to(args.device) for t in batch}
outputs = model(**inputs)
loss = outputs.loss # model outputs are always tuple in transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss += loss.detach().item()
if (step + 1) % args.gradient_accumulation_steps == 0 or (
# last step in epoch but step is always smaller than gradient_accumulation_steps
args.gradient_accumulation_steps >= len(epoch_iterator) == (step + 1)
):
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
logs = {}
if (
args.local_rank == -1 and args.evaluate_during_training
): # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, eval_dataset, model, data_collator, compute_metrics)
record_result.append(results)
for key, value in results.items():
eval_key = "eval_{}".format(key)
logs[eval_key] = value
loss_scalar = (tr_loss - logging_loss) / args.logging_steps
learning_rate_scalar = scheduler.get_lr()[0]
logs["learning_rate"] = learning_rate_scalar
logs["loss"] = loss_scalar
logging_loss = tr_loss
for key, value in logs.items():
tb_writer.add_scalar(key, value, global_step)
print(json.dumps({**logs, **{"step": global_step}}))
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
tokenizer.save_pretrained(output_dir)
torch.save(model, os.path.join(output_dir, "model.pt"))
torch.save(args, os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", output_dir)
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
logger.info("Saving optimizer and scheduler states to %s", output_dir)
if 0 < args.max_steps < global_step:
epoch_iterator.close()
break
if 0 < args.max_steps < global_step:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
results = evaluate(args, eval_dataset, model, data_collator, compute_metrics)
record_result.append(results)
torch.save(record_result, os.path.join(args.output_dir, "result.pt"))
return global_step, tr_loss / global_step
def evaluate(args, eval_dataset, model, data_collator, compute_metrics, prefix=""):
results = {}
eval_output_dir = args.output_dir
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_device_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, sampler=eval_sampler,
batch_size=args.eval_batch_size)
# multi-gpu eval
if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
with torch.no_grad():
inputs = {t:batch[t].to(args.device) for t in batch}
outputs = model(**inputs)
logits = outputs.logits
tmp_eval_loss = outputs.loss
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs["labels"].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
result = compute_metrics((preds, out_label_ids))
results.update(result)
output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results {} *****".format(prefix))
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return results
def main():
parser = HfArgumentParser(LTHTrainingArguments)
if sys.argv[1].endswith(".json"):
args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))[0]
else:
args = parser.parse_args_into_dataclasses()[0]
ignored_columns = ["langs", "spans", "tokens", "ner_tags"]
logger.info("***********************************************")
logger.info(f"* NER fine-tuning for {args.data_language} data.")
logger.info(f"* Pruning type: {args.pruning_type}\n")
logger.info(f"* Output dir: {args.output_dir}\n")
logger.info(f"* mask dir: {args.mask_dir }")
logger.info("***********************************************")
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
)
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of synchronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
)
# Set seed
set_seed(args)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(
args.dataset_name, args.data_language, cache_dir=args.cache_dir
)
else:
data_files = {}
if args.train_file is not None:
data_files["train"] = args.train_file
if args.validation_file is not None:
data_files["validation"] = args.validation_file
if args.test_file is not None:
data_files["test"] = args.test_file
extension = args.train_file.split(".")[-1]
raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=args.cache_dir)
if args.do_train:
column_names = raw_datasets["train"].column_names
features = raw_datasets["train"].features
else:
column_names = raw_datasets["validation"].column_names
features = raw_datasets["validation"].features
if args.text_column_name is not None:
text_column_name = args.text_column_name
elif "tokens" in column_names:
text_column_name = "tokens"
else:
text_column_name = column_names[0]
if args.label_column_name is not None:
label_column_name = args.label_column_name
elif f"{args.task_name}_tags" in column_names:
label_column_name = f"{args.task_name}_tags"
else:
label_column_name = column_names[1]
# In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
# unique labels.
def get_label_list(labels):
unique_labels = set()
for label in labels:
unique_labels = unique_labels | set(label)
label_list = list(unique_labels)
label_list.sort()
return label_list
if isinstance(features[label_column_name].feature, ClassLabel):
label_list = features[label_column_name].feature.names
# No need to convert the labels since they are already ints.
label_to_id = {i: i for i in range(len(label_list))}
else:
label_list = get_label_list(raw_datasets["train"][label_column_name])
label_to_id = {l: i for i, l in enumerate(label_list)}
num_labels = len(label_list)
config = AutoConfig.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path,
num_labels=num_labels,
label2id=label_to_id,
id2label={i: l for l, i in label_to_id.items()},
finetuning_task=args.task_name,
revision=args.model_revision,
use_auth_token=True if args.use_auth_token else None,
)
tokenizer_name_or_path = args.tokenizer_name if args.tokenizer_name else args.model_name_or_path
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_name_or_path,
use_fast=True,
revision=args.model_revision,
use_auth_token=True if args.use_auth_token else None,
)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
if os.path.exists(args.model_name_or_path):
model = torch.load(os.path.join(args.model_name_or_path, "model.pt"))
zero_rate = see_weight_rate(model)
print(f"Model zero rate: {zero_rate}")
else:
if args.initial_weight == 'pre':
model = AutoModelForTokenClassification.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
revision=args.model_revision,
use_auth_token=True if args.use_auth_token else None,
)
elif args.initial_weight == 'rand':
model = AutoModelForTokenClassification.from_config(config=config)
# Tokenizer check: this script requires a fast tokenizer.
if not isinstance(tokenizer, PreTrainedTokenizerFast):
raise ValueError(
"This example script only works for models that have a fast tokenizer. Checkout the big table of models "
"at https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet this "
"requirement"
)
# Preprocessing the dataset
# Padding strategy
padding = "max_length" if args.pad_to_max_length else False
# Tokenize all texts and align the labels with them.
def tokenize_and_align_labels(examples):
tokenized_inputs = tokenizer(
examples[text_column_name],
padding=padding,
truncation=True,
max_length=args.max_seq_length,
# We use this argument because the texts in our dataset are lists of words (with a label for each word).
is_split_into_words=True,
)
labels = []
for i, label in enumerate(examples[label_column_name]):
word_ids = tokenized_inputs.word_ids(batch_index=i)
previous_word_idx = None
label_ids = []
for word_idx in word_ids:
# Special tokens have a word id that is None. We set the label to -100 so they are automatically
# ignored in the loss function.
if word_idx is None:
label_ids.append(-100)
# We set the label for the first token of each word.
elif word_idx != previous_word_idx:
label_ids.append(label_to_id[label[word_idx]])
# For the other tokens in a word, we set the label to either the current label or -100, depending on
# the label_all_tokens flag.
else:
label_ids.append(label_to_id[label[word_idx]] if args.label_all_tokens else -100)
previous_word_idx = word_idx
labels.append(label_ids)
tokenized_inputs["labels"] = labels
return tokenized_inputs
if args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if args.max_train_samples is not None:
train_dataset = train_dataset.select(range(args.max_train_samples))
train_dataset = train_dataset.map(
tokenize_and_align_labels,
batched=True,
num_proc=args.preprocessing_num_workers,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
train_dataset = train_dataset.remove_columns(ignored_columns)
train_dataset.set_format(type='torch', columns=['input_ids', 'token_type_ids', 'attention_mask', 'labels'])
print("Train datset size: {}".format(len(train_dataset)))
if args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = raw_datasets["validation"]
if args.max_eval_samples is not None:
eval_dataset = eval_dataset.select(range(args.max_eval_samples))
eval_dataset = eval_dataset.map(
tokenize_and_align_labels,
batched=True,
num_proc=args.preprocessing_num_workers,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
eval_dataset = eval_dataset.remove_columns(ignored_columns)
eval_dataset.set_format(type='torch', columns=['input_ids', 'token_type_ids', 'attention_mask', 'labels'])
print("Evaluation datset size: {}".format(len(eval_dataset)))
if args.do_predict:
if "test" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset")
predict_dataset = raw_datasets["test"]
if args.max_predict_samples is not None:
predict_dataset = predict_dataset.select(range(args.max_predict_samples))
predict_dataset = predict_dataset.map(
tokenize_and_align_labels,
batched=True,
num_proc=args.preprocessing_num_workers,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on prediction dataset",
)
# Data collator
data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8 if args.fp16 else None)
# Metrics
metric = load_metric("seqeval")
def compute_metrics(p):
predictions, labels = p
predictions = np.argmax(predictions, axis=2)
# Remove ignored index (special tokens)
true_predictions = [
[label_list[p] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
true_labels = [
[label_list[l] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
results = metric.compute(predictions=true_predictions, references=true_labels)
if args.return_entity_level_metrics:
# Unpack nested dictionaries
final_results = {}
for key, value in results.items():
if isinstance(value, dict):
for n, v in value.items():
final_results[f"{key}_{n}"] = v
else:
final_results[key] = value
return final_results
else:
return {
"precision": results["overall_precision"],
"recall": results["overall_recall"],
"f1": results["overall_f1"],
"accuracy": results["overall_accuracy"],
}
model.to(args.device)
if args.do_train:
if args.pruning_type == "random":
random_pruning_model(model, px=args.sparsity * 0.01)
print("Random pruning.....")
zero_rate = see_weight_rate(model)
print('model 0:',zero_rate)
elif args.pruning_type == "oneshot":
print("Oneshot pruning.....")
pruning_model(model, px=args.sparsity * 0.01)
zero_rate = see_weight_rate(model)
print('model 0:',zero_rate)
elif args.pruning_type == "lth":
if args.mask_dir:
logger.info("\nPruning for a mask...")
mask = torch.load(args.mask_dir, map_location=args.device)
pruning_model_custom(model, mask)
zero_rate = see_weight_rate(model)
logger.info(f"Model zero rate: {zero_rate}\n")
else:
raise ValueError("Need a trained mask!")
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model/vocab
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
global_step, tr_loss = train(args, train_dataset, eval_dataset, model, data_collator, compute_metrics, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
results = evaluate(args, eval_dataset, model, data_collator, compute_metrics)
logger.info(f"Final evaluation result: {results}")
# Evaluation
if args.do_eval:
results = evaluate(args, eval_dataset, model, data_collator, compute_metrics)
logger.info(results)
if __name__ == "__main__":
main()